Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 20379
1.  
i

Вы­пол­ни­те дей­ствия: 0,45:0,09 плюс 36:1,2 минус 18,63.

1) 14,37
2) 16,37
3) 8,37
4) 25,37
2.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: левая круг­лая скоб­ка a минус 2b пра­вая круг­лая скоб­ка в квад­ра­те минус 4b в квад­ра­те , зна­ме­на­тель: a конец дроби   и най­ди­те его зна­че­ние при a=0,3; b= минус 0,35.

1) 1,6
2) 2
3) 1,2
4) 1,7
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 18 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 72 конец ар­гу­мен­та синус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 8 конец дроби .

1)  минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
2)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3) −3
4) -1,5
4.  
i

Пре­об­ра­зуй­те вы­ра­же­ние 9x в квад­ра­те плюс 12x плюс 7, вы­де­лив полый квад­рат.

1)  левая круг­лая скоб­ка 3x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс 3
2)  левая круг­лая скоб­ка 3x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те плюс 3
3)  левая круг­лая скоб­ка 3x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те
4)  левая круг­лая скоб­ка 3x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс 2
5.  
i

Ре­ши­те урав­не­ние 6 минус 2 левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка =4 плюс 3 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка .

1) 3
2) 0
3) 1
4) −4
6.  
i

Pешите си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний x минус y минус 2 = 0,2x минус 3y плюс 1 = 0. конец си­сте­мы .

1) (8; 5)
2) (7; 5)
3) (4; 7)
4) (5; 7)
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка дробь: чис­ли­тель: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в квад­ра­те конец дроби минус дробь: чис­ли­тель: x в кубе минус 6x в квад­ра­те плюс 5x минус 1, зна­ме­на­тель: x в кубе конец дроби пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 8x минус 1, зна­ме­на­тель: 2x в квад­ра­те конец дроби минус 8 на­ту­раль­ный ло­га­рифм x плюс C
2)  дробь: чис­ли­тель: 8x плюс 1, зна­ме­на­тель: 2x в квад­ра­те конец дроби плюс 8 на­ту­раль­ный ло­га­рифм x плюс C
3)  дробь: чис­ли­тель: 8x минус 1, зна­ме­на­тель: 2x в квад­ра­те конец дроби плюс 6 на­ту­раль­ный ло­га­рифм x плюс C
4)  дробь: чис­ли­тель: 8x минус 1, зна­ме­на­тель: 2x в квад­ра­те конец дроби плюс 8 на­ту­раль­ный ло­га­рифм x плюс C
8.  
i

Об­ра­зу­ю­щая ко­ну­са равна 4 и со­став­ля­ет с плос­ко­стью ос­но­ва­ния угол 30°. Най­ди­те пло­щадь ос­но­ва­ния ко­ну­са.

1) 4π
2) 16π
3) 6π
4) 12π
9.  
i

Bычис­ли­те зна­че­ние суммы целых чисел, удо­вле­тво­ря­ю­щих си­сте­ме не­ра­венств:  си­сте­ма вы­ра­же­ний 2x плюс 5 мень­ше 3,x в квад­ра­те минус 5x мень­ше или равно 24. конец си­сте­мы .

1) −4
2) −5
3) 6
4) 5
10.  
i

Ре­ши­те урав­не­ние:  синус x ко­си­нус x= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1)  \pm Пи плюс 4 Пи k,k при­над­ле­жит Z
2)  Пи плюс 4 Пи k, k при­над­ле­жит Z
3) 2 Пи плюс 4 Пи k при­над­ле­жит Z
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k, k при­над­ле­жит Z
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка минус 5e в сте­пе­ни левая круг­лая скоб­ка 2x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 1;4 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 2x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс 4 минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка минус 8 пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби e в сте­пе­ни левая круг­лая скоб­ка минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби плюс 4 плюс дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка минус 8 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби плюс дробь: чис­ли­тель: 5e в сте­пе­ни левая круг­лая скоб­ка минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби
3) e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби плюс 4 минус дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка минус 8 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби плюс дробь: чис­ли­тель: 5e в сте­пе­ни левая круг­лая скоб­ка минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка плюс e в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка плюс 4 минус дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка минус 8 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби плюс дробь: чис­ли­тель: 5e в сте­пе­ни левая круг­лая скоб­ка минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби
12.  
i

Най­ди­те ре­ше­ние си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 7x минус 2, зна­ме­на­тель: x минус 3 конец дроби боль­ше или равно 0, дробь: чис­ли­тель: 5x плюс 1, зна­ме­на­тель: 6 минус x конец дроби мень­ше или равно 1. конец си­сте­мы .

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 3 пра­вая квад­рат­ная скоб­ка \cup левая круг­лая скоб­ка 6 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 2, зна­ме­на­тель: 7 конец дроби пра­вая квад­рат­ная скоб­ка \cup левая круг­лая скоб­ка 6 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби ; 6 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 6 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
13.  
i

Най­ди­те пло­щадь за­штри­хо­ван­ной фи­гу­ры:

1) 4,5 кв. ед.
2) 3 кв. ед.
3) 1,5 кв. ед.
4) 6 кв. ед.
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 1 до 2, дробь: чис­ли­тель: 5x минус 2, зна­ме­на­тель: ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та конец дроби dx.

1) 3 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
2) 3 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
3) 3 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
4) 3 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
15.  
i

Ящик в форме пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да имеет квад­рат­ное дно. Вы­со­та ящика 80 см. Диа­го­наль бо­ко­вой грани равна 1 м, тогда сто­ро­на ос­но­ва­ния ящика равна

1) 0,5 м
2) 0,4 м
3) 0,45 м
4) 0,6 м
16.  
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та =2.

1) 2
2) 0
3) 3
4) 1
17.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка = 4,x минус y = 4. конец си­сте­мы .

1) (13; 9)
2) (14; 10)
3) (12; 8)
4) (13; −9)
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс x плюс 7,y= минус 3x плюс 3, минус 5 мень­ше или равно x мень­ше или равно 1.

1) 21
2) 18
3) 24
4) 10
19.  
i

В тра­пе­цию, у ко­то­рой ниж­нее ос­но­ва­ние в два раза боль­ше верх­не­го и бо­ко­вая сто­ро­на равна 9, впи­са­на окруж­ность. Ра­ди­ус окруж­но­сти равен:

1) 3
2)  ко­рень из 7
3) 2 ко­рень из 3
4) 3 ко­рень из 2
20.  
i

Сумма бес­ко­неч­но убы­ва­ю­щей про­грес­сии равна 32, а сумма ее пер­вых че­ты­рех чле­нов 30. Чему равен пер­вый член дан­ной про­грес­сии?

1) 8
2) 12
3) 15
4) 16
21.  
i

Упро­сти­те вы­ра­же­ние: \overrightarrowNF плюс \overrightarrowFA плюс левая круг­лая скоб­ка \overrightarrowLK минус \overrightarrowLA пра­вая круг­лая скоб­ка минус \overrightarrowMD плюс \overrightarrowKD.

1) \overrightarrowAF
2) \overrightarrowNM
3) \overrightarrowMD
4) \overrightarrowND
22.  
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та плюс 4, при x мень­ше 2.

1) x плюс 2
2) 6 минус x
3)  минус x минус 2
4) x плюс 6
23.  
i

Ре­ши­те урав­не­ние \log _2\log _3 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =2.

1) 27
2) 26
3) 80
4) 81
24.  
i

Ре­ши­те не­ра­вен­ство  ко­рень из: на­ча­ло ар­гу­мен­та: 6x минус 5 конец ар­гу­мен­та боль­ше минус ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та .

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 5, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка .
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби ;\; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка .
3) нет ре­ше­ний
4)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 6 конец дроби ;\; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка .
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та ,x_0=4.

1) y = дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x плюс 1
2) y = дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x минус 1
3) y = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби x плюс 1
4) y = 4x плюс 1
26.  
i

Торт в форме ци­лин­дра. Вы­со­та торта 20 см. Диа­метр 30 см. Сред­няя плот­ность торта 0,4 г/см3.

Чтобы раз­ре­зать торт про­ве­ли пять диа­мет­ров и по­лу­чи­ли?

1) 12 ку­соч­ков
2) 6 ку­соч­ков
3) 10 ку­соч­ков
4) 9 ку­соч­ков
27.  
i

Cемей­ная пара со­би­ра­ет­ся в по­езд­ку на по­ез­де. В со­ста­ве по­ез­да име­ют­ся сле­ду­ю­щие типы ва­го­нов:

1) CВ — купе на 2 че­ло­ве­ка;

2) Kупе — купе на 4 че­ло­ве­ка;

3) Плац­карт А — вагон на 36 че­ло­век;

4) Плац­карт В — вагон на 54 че­ло­ве­ка;

5) Oбщий вагон — вагон на 81 че­ло­век.

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в одном Купе.

1) 3
2) 16
3) 8
4) 12
28.  
i

Торт в форме ци­лин­дра. Вы­со­та торта 20 см. Диа­метр 30 см. Сред­няя плот­ность торта 0,4 г/см3.

Для упа­ков­ки тор­тов фаб­ри­ка из­го­тав­ли­ва­ет ко­роб­ки в виде пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да. Для дан­но­го торта нужно из­го­то­вить ко­роб­ку объём ко­то­рой равен?

1) 1,8 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка см в кубе
2) 1,6 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка см в кубе
3) 1,8 умно­жить на 10 в кубе см в кубе
4) 9 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка см в кубе
29.  
i

Торт в форме ци­лин­дра. Вы­со­та торта 20 см. Диа­метр 30 см. Сред­няя плот­ность торта 0,4 г/см3.

Торт раз­делён ше­стью диа­мет­ра­ми на ку­соч­ки рав­ной ве­ли­чи­ны. Най­ди­те массу каж­до­го ку­соч­ка, если сред­няя плот­ность торта 0,4 г/см3.

1) 450 г
2) 300 г
3) 250 г
4) 350 г
30.  
i

Чай­ный двор

По­су­да яв­ля­ет­ся то­ва­ром на­род­но­го по­треб­ле­ния и оце­ни­ва­ет­ся не толь­ко как пред­мет быта, но и как эле­мент де­ко­ра. Спрос на нее все­гда оста­ет­ся на до­ста­точ­но вы­со­ком уров­не по ряду при­чин. На се­го­дняш­ний день рынок пред­став­лен мно­го­об­ра­зи­ем то­ва­ров раз­лич­ных видов по­су­ды и це­но­вых ка­те­го­рий, что поз­во­ля­ет удо­вле­тво­рить любой спрос.

В ма­га­зи­не «Чай­ный двор» вы­став­ле­ны на про­да­жу раз­лич­ный ас­сор­ти­мент чай­ной по­су­ды на­чи­ная от ложки для чая, за­кан­чи­вая по­су­дой для чай­ных це­ре­мо­ний из раз­лич­ных ме­тал­лов и ма­те­ри­а­лов. По акции про­да­ва­лись 5 чашек, 8 блюд­цев, 7 ложек. Ма­ди­на ку­пи­ла домой ком­плект по­су­ды по акции.

Ма­ди­на ку­пи­ла ком­плект из 5 чашек: 3 из них се­реб­ря­ные, 2 про­стые; 8 блюд­цев: 5 се­реб­ря­ных, 3 про­стых; 7 ложек: 5 се­реб­ря­ных, 2 про­стых. Сколь­ки­ми спо­со­ба­ми Ма­ди­на может вы­брать ком­плект пред­ме­тов, со­сто­я­щих из двух се­реб­ря­ных чашек, трех се­реб­ря­ных блюд­цев и одной про­стой ложки.

1) 70
2) 90
3) 80
4) 60
31.  
i

Квад­ра­тич­ная функ­ция за­да­на урав­не­ни­ем y = x в квад­ра­те плюс 4x минус 5. Уста­но­ви­те со­от­вет­ствие между ну­ля­ми функ­ции и ко­ор­ди­на­та­ми вер­ши­ны па­ра­бо­лы.

A)  Нули функ­ции

Б)  Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1)  (−2; −9)

2)  {−5; 1}

3)  {1; 5}

4)  (4; −5)

32.  
i

Се­че­ние шара, удалённое на 1 от цен­тра, имеет пло­щадь 8π. Уста­но­ви­те со­от­вет­ствие между ра­ди­у­сом шара, его объ­е­мом и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Ра­ди­ус шара

Б) Объем шара

1) 27π

2) 3

3) 2

4) 36π

33.  
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в кубе левая круг­лая скоб­ка 2x плюс 4 пра­вая круг­лая скоб­ка . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) (−1; 1)

2) (0; 3)

3) [7; 12)

4) [−4; 0)

Даны урав­не­ния 3 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 2x пра­вая круг­лая скоб­ка = 27 и  ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та плюс 1 = x. Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем пер­во­го урав­не­ния, но не яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) −1

2) 2

3) 3

4) 1

35.  
i

Дана гео­мет­ри­че­ская про­грес­сия (bn), у ко­то­рой b5  =  −14, b8  =  112. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) q

Б) a1

1) −2

2) 5

3) −2

4) 0,875

36.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: \left|x в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та | плюс |2 x y| пра­вая круг­лая скоб­ка при x = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби и y = дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби .

1)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 7 конец дроби
3) \pm ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби конец ар­гу­мен­та
4) \pm ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 5, зна­ме­на­тель: 9 конец дроби конец ар­гу­мен­та
5)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
6) \pm дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
37.  
i

Зна­че­ние вы­ра­же­ния 12 синус дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 8 конец дроби ко­си­нус дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 8 конец дроби равно

1) 0
2) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4)  минус 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
5)  минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
6) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
38.  
i

Три по­ло­жи­тель­ных числа, взя­тые в опре­де­лен­ном по­ряд­ке, об­ра­зу­ют ариф­ме­ти­че­скую про­грес­сию. Если сред­нее из чисел умень­шить в 3 раза, то в том же по­ряд­ке по­лу­чит­ся убы­ва­ю­щая гео­мет­ри­че­ская про­грес­сия. Найти ее зна­ме­на­тель.

1) 3 плюс ко­рень из 8
2)  ко­рень из 2
3) 1 плюс ко­рень из 8
4) 3 плюс 2 ко­рень из 2
5) 4
6) 3 плюс ко­рень из 2
39.  
i

Ре­ши­те си­сте­му, со­дер­жа­щую ир­ра­ци­о­наль­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка ко­рень из: на­ча­ло ар­гу­мен­та: x плюс y минус 1 конец ар­гу­мен­та =1, новая стро­ка ко­рень из: на­ча­ло ар­гу­мен­та: x минус y плюс 2 конец ар­гу­мен­та =2y минус 2. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x плюс y.

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3) 4
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
5) 2
6)  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 16 конец ар­гу­мен­та
40.  
i

Пря­мая OO1 — ось ци­лин­дра. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра, если пло­щадь CC1E1E равна Q.

1) 2πQ
2) πQ
3)  дробь: чис­ли­тель: Пи Q, зна­ме­на­тель: 2 конец дроби
4) 1
5) 4πQ
6) 3πQ