Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 20369
1.  
i

Вы­чис­ли­те  дробь: чис­ли­тель: 49 в сте­пе­ни левая круг­лая скоб­ка 25 пра­вая круг­лая скоб­ка умно­жить на 625 в сте­пе­ни левая круг­лая скоб­ка 15 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка 5 в сте­пе­ни левая круг­лая скоб­ка 12 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 7 в сте­пе­ни левая круг­лая скоб­ка 16 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в кубе конец дроби .

1) 25
2) 245
3) 49
4) 135
2.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: a в квад­ра­те плюс 4a, зна­ме­на­тель: a в квад­ра­те плюс 8a плюс 16 конец дроби и най­ди­те его зна­че­ние при a= минус 2.

1) −2
2) −1
3) 2
4) −4
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби минус синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .

1) 1
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4) −2
4.  
i

Ука­жи­те вер­ное раз­ло­же­ние на мно­жи­те­ли мно­го­чле­на 2a в квад­ра­те плюс 3ab плюс b в квад­ра­те .

1)  левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс 2b пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 2a плюс b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс 2b пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 2a плюс b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка в квад­ра­те
5.  
i

Ко­рень урав­не­ния y = y', при y = x в квад­ра­те плюс 1 равен?

1) 3
2) 4
3) 2
4) 1
6.  
i

Ре­ши­те си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний 2y=5x,x плюс y=14. конец си­сте­мы .

Для по­лу­чен­но­го ре­ше­ния (x0; у0) ука­жи­те про­из­ве­де­ние x0 · y0.

1) 5
2) 10
3) 20
4) 40
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка минус e в сте­пе­ни левая круг­лая скоб­ка минус 2x пра­вая круг­лая скоб­ка плюс 2e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка минус 2x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби плюс 4e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка плюс C
2)  дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка минус 2x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби плюс 4e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка плюс C
3)  дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка минус 2x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби плюс 4e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка плюс C
4)  дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби плюс 4e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка плюс C
8.  
i

Най­ди­те ра­ди­ус шара, если треть его диа­мет­ра равна 6.

1) 12
2) 9
3) 6
4) 10
9.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 2 синус 2 x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та боль­ше или равно 0 \text, 2 ко­си­нус 2 x минус 1 мень­ше или равно 0 . конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи n ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
2)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи n ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 8 конец дроби плюс Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
3)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи n ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 8 конец дроби плюс Пи n пра­вая квад­рат­ная скоб­ка , n при­над­ле­жит Z
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи n ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
10.  
i

Какое из при­ве­ден­ных урав­не­ний не имеет кор­ней?

1)  синус x= дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
2)  тан­генс x= дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
3) \ctg x= минус дробь: чис­ли­тель: 2, зна­ме­на­тель: ко­рень из 3 конец дроби
4)  ко­си­нус x= дробь: чис­ли­тель: 2, зна­ме­на­тель: ко­рень из 3 конец дроби
11.  
i

Най­ди­те зна­че­ние про­из­вод­ной функ­ции x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 8, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс 63x минус 5x в кубе в точке x  =  1.

1)  дробь: чис­ли­тель: 162, зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: 152, зна­ме­на­тель: 3 конец дроби
3) 21
4)  дробь: чис­ли­тель: 98, зна­ме­на­тель: 3 конец дроби
12.  
i

Pешите не­ра­вен­ство: 4 левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка плюс 5x боль­ше или равно 3x.

1)  левая квад­рат­ная скоб­ка минус 2; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка 2; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
13.  
i

Окруж­ность, впи­сан­ная в рав­но­бед­рен­ный тре­уголь­ник, делит в точке ка­са­ния одну из бо­ко­вых сто­рон на два от­рез­ка (как по­ка­за­но на ри­сун­ке), длины ко­то­рых равны 14 и 3, счи­тая от вер­ши­ны. Най­ди­те пе­ри­метр тре­уголь­ни­ка.

1) 10
2) 50
3) 20
4) 40
14.  
i

Вы­чис­ли­те ин­те­грал:  при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка синус 3 x ко­си­нус 2 x минус ко­си­нус 3 x синус 2 x пра­вая круг­лая скоб­ка d x.

1) 1
2) 0,5
3) −0,5
4) 0
15.  
i

B пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD точка O — центр ос­но­ва­ния, S — вер­ши­на, SA = 10 см и BD = 16 см. Най­ди­те длину от­рез­ка SO.

1) 7 см
2) 8 см
3) 5 см
4) 6 см
16.  
i

Ре­ши­те урав­не­ние  дробь: чис­ли­тель: 2, зна­ме­на­тель: x конец дроби = дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 минус 4x конец ар­гу­мен­та , зна­ме­на­тель: x в квад­ра­те конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 минус 4x конец ар­гу­мен­та конец дроби .

1) 0
2) 5
3) 1
4) 2
17.  
i

Ре­ши­те си­сте­му не­ра­венств

 си­сте­ма вы­ра­же­ний 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка мень­ше левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 6 минус 8 x пра­вая круг­лая скоб­ка , левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 4 x минус 12 пра­вая круг­лая скоб­ка боль­ше 1. конец си­сте­мы .

1) (0; 6)
2) (0; 1)
3) (-2; 6)
4) (2; 6)
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс 2x,y=x плюс 2.

1)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 31, зна­ме­на­тель: 6 конец дроби
19.  
i

На­клон­ная крыша уста­нов­ле­на на трёх вер­ти­каль­ных опо­рах, рас­по­ло­жен­ных на одной пря­мой. Сред­няя опора стоит по­се­ре­ди­не между малой и боль­шой опо­ра­ми (см. рис.). Вы­со­та малой опоры 1,8 м, вы­со­та боль­шой опоры 2,8 м. Най­ди­те вы­со­ту сред­ней опоры.

1) 1,8
2) 2,8
3) 2,3
4) 2,5
20.  
i

Най­ди­те пер­вые че­ты­ре члена по­сле­до­ва­тель­но­сти {an}, если a1 = 7 и a_n плюс 1=5 плюс 2a_n.

1) 7; 29; 50; 71
2) 7; 21; 37; 51
3) 7; 28; 49; 82
4) 7; 19; 43; 91
21.  
i

Какой век­тор нужно вы­честь из вы­ра­же­ния \overrightarrowAB плюс \overrightarrowCD минус \overrightarrowAC плюс \overrightarrowEC минус \overrightarrowEB плюс \overrightarrowBC, чтобы по­лу­чил­ся \vec0?

1) \overrightarrowBD
2) \overrightarrow0
3) \overrightarrowBC
4) \overrightarrowCB
22.  
i

Зна­че­ние про­из­ве­де­ния

 дробь: чис­ли­тель: x в квад­ра­те плюс 3 x плюс 2 x y плюс 6 y, зна­ме­на­тель: 2 x в квад­ра­те плюс x y плюс 6 x плюс 3 y конец дроби умно­жить на дробь: чис­ли­тель: 6 x в квад­ра­те плюс 2 x плюс 3 x y плюс y, зна­ме­на­тель: x y минус 2 x плюс 2 y в квад­ра­те минус 4 y конец дроби

равно

1)  дробь: чис­ли­тель: 3 x плюс 1, зна­ме­на­тель: y минус 2 конец дроби
2)  дробь: чис­ли­тель: 2 x плюс y, зна­ме­на­тель: x плюс 21 конец дроби
3)  дробь: чис­ли­тель: x плюс 3, зна­ме­на­тель: 2 x плюс y конец дроби
4)  дробь: чис­ли­тель: x плюс 2 y, зна­ме­на­тель: x плюс 3 конец дроби

Сумма кор­ней (или ко­рень, если он один) урав­не­ния 2 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 x пра­вая круг­лая скоб­ка =96 минус 2 умно­жить на x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 2 пра­вая круг­лая скоб­ка равна ...

1) 225
2) 189
3) 243
4) 144
24.  
i

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство \ctg x боль­ше дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби .

1)  левая круг­лая скоб­ка Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
2)  левая круг­лая скоб­ка 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
3)  левая круг­лая скоб­ка Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
4)  левая круг­лая скоб­ка 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3x в кубе плюс 2x в квад­ра­те минус x плюс 1,x_0= минус 5.

1) y = 204x плюс 5
2) y = 204x плюс 701
3) y = минус 204x плюс 701
4) y = 204x минус 319
26.  
i

В ка­би­не­те ма­те­ма­ти­ки име­ет­ся шкаф с тремя пол­ка­ми для мо­де­лей объ­ем­ных раз­но­цвет­ных фигур — пи­ра­мид, шара, па­рал­ле­ле­пи­пе­да, ко­ну­са, приз­мы, тет­ра­эд­ра, ци­лин­дра общим ко­ли­че­ством 14 штук (по две мо­де­ли каж­до­го вида).

Ка­ко­ва ве­ро­ят­ность на­у­гад взять фи­гу­ру, яв­ля­ю­щу­ю­ся телом вра­ще­ния?

1)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 7 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби 14
4)  дробь: чис­ли­тель: 3, зна­ме­на­тель: конец дроби 14
27.  
i

Драй­ве­ра­ми в неф­те­до­бы­че стра­ны оста­ют­ся три круп­ных неф­те­га­зо­вых про­ек­та — Тен­гиз, Ка­ра­ча­га­нак и Ка­ша­ган. Они вно­сят су­ще­ствен­ный вклад в эко­но­ми­че­ский рост стра­ны в сред­не­сроч­ном пе­ри­о­де. Объем до­бы­чи нефти будет расти и по про­гно­зу Ми­ни­стер­ства энер­ге­ти­ки РК к 2025 году вый­дет на уро­вень в 105 млн. тонн в год. Для этого, на всех трех ме­сто­рож­де­ни­ях, ре­а­ли­зу­ют­ся про­ек­ты даль­ней­ше­го рас­ши­ре­ния и про­дле­ния до­бы­чи.

Oпре­де­ли­те гра­дус­ную меру сек­то­ра, со­от­вет­ству­ю­ще­го объ­е­му до­бы­чи нефти су­пер­ги­ган­том «Тен­гиз­шев­ройл» на кру­го­вой диа­грам­ме (ответ округ­ли­те до целых).

1) 82°
2) 123°
3) 114°
4) 74°
28.  
i

Гра­нит­ный по­ста­мент для уста­нов­ки ме­мо­ри­аль­ной плиты имеет форму пра­виль­ной усе­чен­ной пи­ра­ми­ды, верх­няя пло­щад­ка — квад­рат сто­ро­ной 2 метра, сто­ро­на ниж­не­го ос­но­ва­ния 10 мет­ров, его вы­со­та 7 мет­ров.

Рас­счи­тать ко­ли­че­ство ка­мен­ной де­ко­ра­тив­ной шту­ка­тур­ки для вы­со­ко­ка­че­ствен­но­го ошту­ка­ту­ри­ва­ния бо­ко­вой по­верх­но­сти по­ста­мен­та. Рас­ход рас­тво­ра для де­ко­ра­тив­ной шту­ка­тур­ки 0,02 м3 на один квад­рат­ный метр. Ответ округ­ли­те до целых.

1) 5 м3
2) 4 м3
3) 3 м3
4) 6 м3
29.  
i

Гра­нит­ный по­ста­мент для уста­нов­ки ме­мо­ри­аль­ной плиты имеет форму пра­виль­ной усе­чен­ной пи­ра­ми­ды, верх­няя пло­щад­ка — квад­рат сто­ро­ной 2 метра, сто­ро­на ниж­не­го ос­но­ва­ния 10 мет­ров, его вы­со­та 7 мет­ров.

Най­ди­те массу под­став­ки, если удель­ная плот­ность гра­ни­та 2,5 г/см3. Ответ вы­ра­зить в кг.

1) 722300 кг
2) 722500 кг
3) 722250 кг
4) 722350 кг
30.  
i

Гра­нит­ный по­ста­мент для уста­нов­ки ме­мо­ри­аль­ной плиты имеет форму пра­виль­ной усе­чен­ной пи­ра­ми­ды, верх­няя пло­щад­ка — квад­рат сто­ро­ной 2 метра, сто­ро­на ниж­не­го ос­но­ва­ния 10 мет­ров, его вы­со­та 7 мет­ров.

Какой длины нужно по­ре­зать ко­ван­ную де­ко­ра­тив­ную ме­тал­ли­че­скую по­ло­су для за­креп­ле­ния ее от углов верх­не­го ос­но­ва­ния пер­пен­ди­ку­ляр­но реб­рам ниж­не­го ос­но­ва­ния. Ответ округ­ли­те до целых.

1) 64 м
2) 62 м
3) 60 м
4) 63 м
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = 2 синус x. Уста­но­ви­те со­от­вет­ствия:

A) Нули функ­ции

Б) Об­ласть до­пу­сти­мых зна­че­ний функ­ции

1) [−1; 1]

2)  левая фи­гур­ная скоб­ка 2 Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка

3)  левая фи­гур­ная скоб­ка Пи k: k при­над­ле­жит Z }

4) [−2; 2]

32.  
i

Пло­щадь се­че­ния шара, удалённого на 2 от цен­тра шара, равна 5π. Уста­но­ви­те со­от­вет­ствие между пло­ща­дью по­верх­но­сти шара, его ра­ди­у­сом и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Пло­щадь по­верх­но­сти шара

Б) Ра­ди­ус шара

1) [3; 10)

2) (110; 116]

3) (60; 80)

4) [120; 124]

33.  
i

Най­ди­те два на­ту­раль­ных числа a и b, от­но­ше­ние ко­то­рых равно 3, а от­но­ше­ние суммы их квад­ра­тов к их сумме равно 10. Уста­но­ви­те со­от­вет­ствия:

A) Число a при­над­ле­жит про­ме­жут­ку

Б) Число b при­над­ле­жит про­ме­жут­ку

1) [1; 3)

2) [3; 4]

3) (10; 12]

4) (6; 8)

34.  
i

Даны урав­не­ния x в квад­ра­те плюс 3x минус 4 = 0 и 3x левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка = 0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 0, 1, 3

2) −4, 0, 1

3) −1, 0, 6

4) −2, 2, 3

35.  
i

Вы­пи­са­но не­сколь­ко по­сле­до­ва­тель­ных чле­нов гео­мет­ри­че­ской про­грес­сии: …; 150; x; 6; 1,2; … Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) q

Б) x

1) 7,2

2) 30

3) 0,2

4) 1080

36.  
i

Зна­че­ние вы­ра­же­ния  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка де­ся­тич­ный ло­га­рифм ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка де­ся­тич­ный ло­га­рифм ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка равно

1) 2 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  минус 0,5
4) 0,2
5)  левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
6) 0,5
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби \ctg дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби .

1) −3
2) 3
3) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4)  минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
5) −1
6) 1
38.  
i

Ука­жи­те пер­вые пять чле­нов по­сле­до­ва­тель­но­сти, со­став­лен­ной из зна­че­ний функ­ции y = ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из 2 пра­вая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка ко­рень из 2 пра­вая круг­лая скоб­ка , при x боль­ше 1, где x — число, яв­ля­ю­ще­е­ся сте­пе­нью числа 2.

1) 2; 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 4; 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та : 8
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 4 ; 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 8
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 2 ; 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 8 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 8 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 10 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
5) 1 ; ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 2 ; 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 4
6)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 8 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 16 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
39.  
i

Ре­ши­те си­сте­му, при­во­ди­мую к со­дер­жа­щей од­но­род­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка дробь: чис­ли­тель: x плюс y, зна­ме­на­тель: x минус y конец дроби плюс дробь: чис­ли­тель: x минус y, зна­ме­на­тель: x плюс y конец дроби = дробь: чис­ли­тель: 13, зна­ме­на­тель: 6 конец дроби , новая стро­ка xy=5. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x_1y_1 плюс x_2y_2.

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 100 конец ар­гу­мен­та
2) 12
3)  дробь: чис­ли­тель: 20, зна­ме­на­тель: 2 конец дроби
4) 5
5) 10
6) 8
40.  
i

B ос­но­ва­нии пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да лежит пря­мо­уголь­ник со сто­ро­на­ми 3 и 4. Вы­со­та па­рал­ле­ле­пи­пе­да 5. Най­ди­те пло­щадь диа­го­наль­но­го се­че­ния пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да.

1) 20
2) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 625 конец ар­гу­мен­та
4)  ко­рень из: на­ча­ло ар­гу­мен­та: 400 конец ар­гу­мен­та
5) 25
6) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та