Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 35327
1.  
i

Вы­чис­ли­те:  дробь: чис­ли­тель: левая круг­лая скоб­ка 1 минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 3 минус 0,5 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка 1 минус дробь: чис­ли­тель: 21, зна­ме­на­тель: 25 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка левая круг­лая скоб­ка 6,25 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в квад­ра­те конец дроби .

1) 2
2) −1
3) 0,5
4) 1
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: a левая круг­лая скоб­ка b минус 3a пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 3a в квад­ра­те минус ab конец дроби минус 3a при a=2,18, b= минус 5,6.

1) 5,6
2) 0
3) −5,6
4) 0,6
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та синус левая круг­лая скоб­ка минус 780 гра­ду­сов пра­вая круг­лая скоб­ка .

1) −2
2) −4
3) 4
4) 6
4.  
i

Опре­де­ли­те сте­пень мно­го­чле­на: 3x в сте­пе­ни 5 y в кубе минус 6y в квад­ра­те плюс 12xy в кубе плюс 4.

1) 6
2) 3
3) 8
4) 4
5.  
i

Най­ди­те корни урав­не­ния: |2x минус 6| = 10.

1) −10; 4
2) −2; 8
3) −8; 2
4) −2; 6
6.  
i

Ре­ши­те си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний 2x плюс 5y=5,x минус 2y=7. конец си­сте­мы .

Для по­лу­чен­но­го ре­ше­ния (x0; y0) си­сте­мы вы­чис­ли­те сумму x0 + y0.
1) 2
2) 12
3) 3
4) 4
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 ко­си­нус в квад­ра­те x конец дроби плюс дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 синус в квад­ра­те x конец дроби пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби \operatorname тан­генс x минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби \operatorname\ctgx плюс C
2)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби \operatorname тан­генс x плюс дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби \operatorname\ctgx плюс C
3)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби \operatorname\ctgx минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби \operatorname тан­генс x плюс C
4)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби \operatorname синус x минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби \operatorname ко­си­нус x плюс C
8.  
i

Се­ку­щая плос­кость пе­ре­се­ка­ет сферу по окруж­но­сти, ра­ди­ус ко­то­рой равен 2. Если рас­сто­я­ние от цен­тра сферы до се­ку­щей плос­ко­сти равно 4, то пло­щадь сферы равна:

1) 40 Пи
2) 20 Пи
3) 160 Пи
4) 80 Пи
9.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 2x минус 1, зна­ме­на­тель: x конец дроби мень­ше 0, дробь: чис­ли­тель: 3x плюс 5, зна­ме­на­тель: x минус 2 конец дроби мень­ше или равно 0. конец си­сте­мы .

1) (0; 0,5)
2) [−0,6; 0,5)
3) [0; 0,5]
4)  левая квад­рат­ная скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
10.  
i

Ко­рень урав­не­ния  ко­си­нус 2 x минус синус x=0, при­над­ле­жа­щий про­ме­жут­ку  левая круг­лая скоб­ка 0; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , равен?

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
4) 0
11.  
i

Най­ди­те зна­че­ние про­из­вод­ной функ­ции y = x в квад­ра­те плюс ко­рень из: на­ча­ло ар­гу­мен­та: 6x плюс 3 конец ар­гу­мен­та плюс ко­рень из 3 в точке x0  =  1.

1) 3
2) 0
3) 2
4) 1
12.  
i

Най­ди­те пару чисел (x; y), вы­бе­ри­те ту, ко­то­рая не удо­вле­тво­ря­ет ре­ше­нию не­ра­вен­ства: 4x минус 5 боль­ше или равно y.

1) (5; 2)
2) (2; 1)
3) (3; −1)
4) (−3; −4)
13.  
i

Пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка с ка­те­та­ми 6 и 9 равна?

1) 48
2) 27
3) 54
4) 33
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от минус 4 до 1, левая круг­лая скоб­ка 7x в квад­ра­те минус 3x плюс 11 пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 1375, зна­ме­на­тель: 12 конец дроби
2)  дробь: чис­ли­тель: 1375, зна­ме­на­тель: 6 конец дроби
3)  дробь: чис­ли­тель: 1639, зна­ме­на­тель: 6 конец дроби
4) 228
15.  
i

Bо сколь­ко раз уве­ли­чит­ся объем куба, если его ребра уве­ли­чить в 7 раз.

1) в 144 раз
2) в 125 раз
3) в 14 раз
4) в 343 раз
16.  
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: 9 минус 8x конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 4 конец ар­гу­мен­та .

1) 1
2) 6
3) 0
4) 4
17.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 3 x плюс ло­га­рифм по ос­но­ва­нию 3 y = 2,x в квад­ра­те y минус 2y плюс 9 = 0. конец си­сте­мы .

1) (9; 1)
2) (−1; −4,5)
3) (−2; −4,5)
4) (1; 9)
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y= минус x в квад­ра­те плюс x плюс 4,y=x плюс 4, минус 4 мень­ше или равно x мень­ше или равно 0.

1)  дробь: чис­ли­тель: 64, зна­ме­на­тель: 5 конец дроби
2)  дробь: чис­ли­тель: 67, зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 64, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 65, зна­ме­на­тель: 3 конец дроби
19.  
i

Най­ди­те сто­ро­ну ромба, если его пло­щадь равна 72 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , а угол между сто­ро­на­ми 135°.

1) 12
2) 11
3) 13
4) 10
20.  
i

Най­ди­те сумму бес­ко­неч­ной гео­мет­ри­че­ской про­грес­сии, опре­де­ля­ю­щей­ся по фор­му­ле b_n = 6 умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни n .

1) S = 9
2) S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
3) S = 3
4) S = 2
21.  
i

Век­тор \overrightarrowAB с кон­цом в точке B(–4; –1) имеет ко­ор­ди­на­ты (–5; 8). Най­ди­те ко­ор­ди­на­ты точки A.

1) (0; −9)
2) (1; −9)
3) (1; −7)
4) (3; −6)
22.  
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: x плюс y минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: xy конец ар­гу­мен­та , зна­ме­на­тель: ко­рень из y минус ко­рень из x конец дроби .

1)  левая круг­лая скоб­ка ко­рень из y плюс ко­рень из x пра­вая круг­лая скоб­ка в квад­ра­те
2)  левая круг­лая скоб­ка ко­рень из y минус ко­рень из x пра­вая круг­лая скоб­ка в квад­ра­те
3)  ко­рень из y плюс ко­рень из x
4)  ко­рень из y минус ко­рень из x
23.  
i

Ре­ши­те урав­не­ние \log _3x минус 14=2.

1) 2
2) 0
3) 1
4)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
24.  
i

Ре­ши­те не­ра­вен­ство:  ко­рень из: на­ча­ло ар­гу­мен­та: 2 плюс x конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 2 минус x конец ар­гу­мен­та мень­ше 0.

1)  левая круг­лая скоб­ка минус 1; минус 0 пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка 0; 1 пра­вая квад­рат­ная скоб­ка
3) нет ре­ше­ний
4)  левая круг­лая скоб­ка 0; 1 пра­вая квад­рат­ная скоб­ка
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3x в кубе плюс 2x в квад­ра­те минус x плюс 1,x_0= минус 5.

1) y = 204x плюс 5
2) y = 204x плюс 701
3) y = минус 204x плюс 701
4) y = 204x минус 319
26.  
i

Дет­ское ве­дер­ко имеет форму усе­чен­но­го ко­ну­са с диа­мет­ра­ми ос­но­ва­нии 10 см и 34 см (ниж­нее ос­но­ва­ние мень­ше верх­не­го), об­ра­зу­ю­щей 13 см.

Если  Пи = 3, то пло­щадь ниж­не­го ос­но­ва­ния равна

1) 720 см2
2) 432 см2
3) 75 см2
4) 48 см2
27.  
i

Hа столе лежат кар­точ­ки, на ко­то­рых за­пи­са­ны числа 1; 2; 3; 4; 5. Марат на­у­гад взял три из них.

Kакова ве­ро­ят­ность, что сумма чисел, за­пи­сан­ных на кар­точ­ках, ко­то­рые вы­тя­нул Марат, мень­ше 10?

1) 0,9
2) 0,1
3) 0,3
4) 0,6
28.  
i

Алек­сандр из­го­то­ви­ла ко­ну­со­об­раз­ный го­лов­ной убор  — кол­пак (см. рис.).

H  =  15 см, R  =  8 см

На сколь­ко уве­ли­чит­ся бо­ко­вая по­верх­ность кол­па­ка, если вы­со­ту уве­ли­чить на 9 см, а ра­ди­ус ос­но­ва­ния умень­шить на 1 см?

1) 37π см2
2) 42π см2
3) 39π см2
4) 34π см2
29.  
i

Hа столе лежат кар­точ­ки, на ко­то­рых за­пи­са­ны числа 1; 2; 3; 4; 5. Марат на­у­гад взял три из них.

Kакова ве­ро­ят­ность того, что Марат смо­жет по­стро­ить пря­мо­уголь­ный тре­уголь­ник, сто­ро­ны ко­то­ро­го равны чис­лам, за­пи­сан­ных на вы­бран­ных им кар­точ­ках?

1) 0,6
2) 0,1
3) 0,5
4) 0,3
30.  
i

Перед отъ­ез­дом в Япо­нию, Самат при­об­рел для хра­не­ния важ­ных до­ку­мен­тов и цен­ных вещей ко­до­вый сейф с ше­сти­знач­ным кодом, со­сто­я­щим из цифр 1, 2, 3 и букв M, N, K.

Сколь­ко ше­сти­знач­ных кодов для от­кры­ва­ния сейфа воз­мож­ны, если буквы M и K долж­ны сто­ять рядом?

1) 720
2) 320
3) 120
4) 240
31.  
i

За­да­на функ­ция y=2 ко­си­нус x минус 1. Уста­но­ви­те со­от­вет­ствие между наи­боль­шим и наи­мень­шим зна­че­ни­ем функ­ции и его чис­ло­вым зна­че­ни­ем.

A) Наи­боль­шее зна­че­ние функ­ции

Б) Наи­мень­шее зна­че­ние функ­ции

1) 2

2) 1

3) −3

4) −1

32.  
i

Пло­щадь пра­виль­но­го тре­уголь­ни­ка равна 12 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та . Уста­но­ви­те со­от­вет­ствие между дли­ной сто­ро­ны тре­уголь­ни­ка, ра­ди­у­сом окруж­но­сти, опи­сан­ной около него и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина сто­ро­ны тре­уголь­ни­ка

Б) Ра­ди­ус окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка

1) 4 ко­рень из 3

2) 2 ко­рень из 3

3) 4

4) 3

33.  
i

Най­ди­те два на­ту­раль­ных числа a и b, от­но­ше­ние ко­то­рых равно 3, а от­но­ше­ние суммы их квад­ра­тов к их сумме равно 10. Уста­но­ви­те со­от­вет­ствия:

A) Число a при­над­ле­жит про­ме­жут­ку

Б) Число b при­над­ле­жит про­ме­жут­ку

1) [1; 3)

2) [3; 4]

3) (10; 12]

4) (6; 8)

34.  
i

Даны урав­не­ния x в квад­ра­те плюс 3x минус 4 = 0 и 3x левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка = 0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 0, 1, 3

2) −4, 0, 1

3) −1, 0, 6

4) −2, 2, 3

35.  
i

Сумма n пер­вых чле­нов ариф­ме­ти­че­ской про­грес­сии (an) опре­де­ля­ет­ся фор­му­лой: S_n= дробь: чис­ли­тель: 5,2 минус 0,8 n, зна­ме­на­тель: 2 конец дроби умно­жить на n. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) S6

Б) a4

1) −0,2

2) 11,2

3) 0

4) 1,2

36.  
i

Вы­бе­ри­те все про­ме­жут­ки, ко­то­рым при­над­ле­жит зна­че­ние вы­ра­же­ния 2 левая круг­лая скоб­ка 1,8x плюс 2 пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка 0,9 минус 3x пра­вая круг­лая скоб­ка минус 3,7 при x  =  1.

1) (1; 6)
2) (3; 6]
3) [7; 9)
4) [7; 11]
5) (2; 10)
6) [4; 7]
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус 81 гра­ду­сов синус 51 гра­ду­сов плюс синус 9 гра­ду­сов синус 39 гра­ду­сов .

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3) 0
4) 1
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6) 2
38.  
i

В ариф­ме­ти­че­ской про­грес­сии сумма пер­вых пят­на­дца­ти ее чле­нов на 8 мень­ше суммы пер­вых две­на­дца­ти чле­нов. Най­ди­те че­тыр­на­дца­тый член про­грес­сии и сумму пер­вых 27 ее чле­нов.

1) 14
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: 8, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби
5) −64
6) −72
39.  
i

Ре­ши­те си­сте­му по­ка­за­тель­ных урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка 8 в сте­пе­ни левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка =32 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 4y минус 1 пра­вая круг­лая скоб­ка , новая стро­ка 5 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та в сте­пе­ни левая круг­лая скоб­ка 2y плюс 1 пра­вая круг­лая скоб­ка . конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния 4x плюс 2y.

1)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 14 конец дроби
2) 1
3)  ко­рень из 1
4)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 14 конец дроби
5)  дробь: чис­ли­тель: 13, зна­ме­на­тель: 14 конец дроби
6) 2 в сте­пе­ни 0
40.  
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де ABCDF все ребра равны 1. Най­ди­те зна­че­ние угла между реб­ром FD и плос­ко­стью ос­но­ва­ния.

1) 45°
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
5) 60°
6)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби