Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 30701
1)  ко­рень из 3 минус 7
2) 1 минус ко­рень из 3
3) 7 минус ко­рень из 3
4)  ко­рень из 3 минус 1
2.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 2c минус 4, зна­ме­на­тель: cd минус 2d конец дроби   и най­ди­те его зна­че­ние при c=0,5; d=5.

1) 1
2) 0,4
3) 0,2
4) 0,5
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  левая круг­лая скоб­ка ко­си­нус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби плюс ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби минус синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби пра­вая круг­лая скоб­ка .

1)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2) 1
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4.  
i

При­ве­ди­те од­но­член 7a в кубе c в кубе a в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка c в сте­пе­ни 7 к стан­дарт­но­му виду.

1) 7ac в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка
2) 7a в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка c в сте­пе­ни левая круг­лая скоб­ка минус 10 пра­вая круг­лая скоб­ка
3) 7a в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка c в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка
4) 7ac в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка
5.  
i

Урав­не­ние |x в квад­ра­те плюс x минус 3| = x имеет ир­ра­ци­о­наль­ный ко­рень

1)  ко­рень из 2
2)  ко­рень из 5
3)  минус ко­рень из 5
4)  ко­рень из 3
6.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 16 минус 2x плюс 3 левая круг­лая скоб­ка y плюс 4 пра­вая круг­лая скоб­ка = 17,2 левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка минус 2 левая круг­лая скоб­ка y минус 5 пра­вая круг­лая скоб­ка минус 44 = 0. конец си­сте­мы .

1) (55; 33)
2) (−5; 3)
3) (5; 3)
4) (−55; 33)
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка ко­си­нус 2x ко­си­нус x плюс синус 2x синус x пра­вая круг­лая скоб­ка dx.

1)  синус x
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби синус x
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби синус x
4)  синус 3x
8.  
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 28 Пи , и его объем равен 28 Пи . Най­ди­те вы­со­ту ци­лин­дра.

1) 3
2) 3,5
3) 7
4) 14
9.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний x левая круг­лая скоб­ка 2x минус 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка боль­ше или равно 0,x в квад­ра­те минус 3x мень­ше 0. конец си­сте­мы .

1) (2; 3)
2) [2; 3)
3) [0; 3]
4) (2; 3]
10.  
i

Най­ди­те ко­рень урав­не­ния  синус 3 x плюс ко­си­нус 3 x= ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , ко­то­рый при­над­ле­жит чис­ло­во­му ин­тер­ва­лу (90°; 180°).

1) 135°
2) 255°
3) 175°
4) 190°
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 4x в кубе минус 3x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка 3;4 пра­вая круг­лая скоб­ка .

1) x в сте­пе­ни левая круг­лая скоб­ка 8 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 2726, зна­ме­на­тель: 7 конец дроби
2) x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка
3) x в квад­ра­те минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 2726, зна­ме­на­тель: 7 конец дроби
4) x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 6022, зна­ме­на­тель: 7 конец дроби .
12.  
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 7, зна­ме­на­тель: 2x минус 3 конец дроби мень­ше 0.

1)  левая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая круг­лая скоб­ка
13.  
i

Сто­ро­ны тре­уголь­ни­ка равны 4 см, 6 см и 8 см. Най­ди­те сто­ро­ны по­доб­но­го ему тре­уголь­ни­ка, если ко­эф­фи­ци­ент по­до­бия равен 2. В от­ве­те ука­жи­те сумму длин сто­рон.

1) 32 см
2) 36 см
3) 30 см
4) 40 см
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 0 до 5, дробь: чис­ли­тель: 6, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3x плюс 1 конец ар­гу­мен­та конец дроби dx.

1) 5
2)  дробь: чис­ли­тель: 6, зна­ме­на­тель: 13 конец дроби
3) 14
4) 12
15.  
i

Най­ди­те объем пра­виль­ной че­ты­рех­уголь­ной усе­чен­ной пи­ра­ми­ды, если сто­ро­ны ее ос­но­ва­ния 1 см и 9 см, а вы­со­та 6 см.

1) 162 см3
2) 182 см3
3) 152 см3
4) 180 см3
16.  
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 4x плюс 1 конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3x минус 2 конец ар­гу­мен­та =5.

1) 3
2) −2
3) −1
4) 2
17.  
i

Ре­ши­те си­сте­му не­ра­венств

 си­сте­ма вы­ра­же­ний 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка мень­ше левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 6 минус 8 x пра­вая круг­лая скоб­ка , левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 4 x минус 12 пра­вая круг­лая скоб­ка боль­ше 1. конец си­сте­мы .

1) (0; 6)
2) (0; 1)
3) (-2; 6)
4) (2; 6)
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=3x в квад­ра­те минус 3x плюс 3,y=9x минус 2,x = 0,5,x = 1.

1)  дробь: чис­ли­тель: 28 ко­рень из: на­ча­ло ар­гу­мен­та: 21 конец ар­гу­мен­та , зна­ме­на­тель: 11 конец дроби
2)  минус дробь: чис­ли­тель: 9, зна­ме­на­тель: 8 конец дроби
3)  дробь: чис­ли­тель: 28 ко­рень из: на­ча­ло ар­гу­мен­та: 23 конец ар­гу­мен­та , зна­ме­на­тель: 9 конец дроби
4)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 8 конец дроби
19.  
i

Сто­ро­ны па­рал­ле­ло­грам­ма равны 5 см и 6 см, а одна из диа­го­на­лей равна 7 см. Най­ди­те наи­мень­шую вы­со­ту па­рал­ле­ло­грам­ма.

1) 8 см
2) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та см
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та см
4) 4 см
20.  
i

Сумма пер­вых трех чле­нов ариф­ме­ти­че­ской про­грес­сии равна 27, а сумма по­след­них трех чле­нов дан­ной про­грес­сии равна 45. Сколь­ко чле­нов в за­дан­ной ариф­ме­ти­че­ской про­грес­сии, если ее пер­вый член равен 7?

1) 3
2) 4
3) 5
4) 6
21.  
i

Най­ди­те угол между век­то­ра­ми \overrightarrowAB и \overrightarrowCD, если \overrightarrowAB= левая круг­лая скоб­ка 1;2;3 пра­вая круг­лая скоб­ка ; \overrightarrowCD= левая круг­лая скоб­ка 5;0; минус 12 пра­вая круг­лая скоб­ка .

1)  арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 31 ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та , зна­ме­на­тель: 182 конец дроби пра­вая круг­лая скоб­ка
2)  арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 31 ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та , зна­ме­на­тель: 91 конец дроби пра­вая круг­лая скоб­ка
3)  арк­ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 31 ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та , зна­ме­на­тель: 182 конец дроби пра­вая круг­лая скоб­ка
4)  арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 31 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та , зна­ме­на­тель: 182 конец дроби пра­вая круг­лая скоб­ка
22.  
i

Упро­сти­те:  дробь: чис­ли­тель: левая круг­лая скоб­ка 3 a в квад­ра­те b в кубе пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 18 a b в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка конец дроби .

1) 0,6a в квад­ра­те
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби a в квад­ра­те
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби a в сте­пе­ни 4
4) 0,5a в кубе
23.  
i

Ре­ши­те урав­не­ние \log _2\log _3 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =2.

1) 27
2) 26
3) 80
4) 81
24.  
i

Ре­ши­те не­ра­вен­ство:  ко­рень из: на­ча­ло ар­гу­мен­та: 3 плюс x конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 3 минус x конец ар­гу­мен­та боль­ше 0.

1)  левая круг­лая скоб­ка минус 3; 3 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус 1; 1 пра­вая круг­лая скоб­ка
3) нет ре­ше­ний
4)  левая квад­рат­ная скоб­ка минус 3; 3 пра­вая квад­рат­ная скоб­ка
25.  
i

На­пи­ши­те урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в квад­ра­те минус x минус 12 в точке x0  =  5.

1) y = 6x минус 37
2) y = 9x минус 37
3) y = 9x минус 34
4) y = 9x минус 38
26.  
i

Учи­тель дал до­маш­нее прак­ти­че­ское за­да­ние по гео­мет­рии. Сде­лать макет приз­мы и со­ста­вить к ним за­да­ния. Самат под­го­то­вил макет пра­виль­ной ше­сти­уголь­ной приз­мы со сто­ро­ной ос­но­ва­ния рав­ной 1, а бо­ко­вое ребро 2 и со­ста­вил сле­ду­ю­щие за­да­ния.

Най­ди­те сумму век­то­ров \overrightarrowAA_1 и \overrightarrowE_1D_1.

1)  \overrightarrowD_1C
2)  \overrightarrowAB_1
3)  \overrightarrowBC
4)  \overrightarrowAF_1
27.  
i

Айша из­го­то­ви­ла ко­ну­со­об­раз­ный го­лов­ной убор  — кол­пак (см. рис.).

H=24 см, R=7 см

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, π ≈ 3.

1) 525 см2
2) 500 см2
3) 540 см2
4) 532 см2
28.  
i

Пи­ра­мид­ка — это вто­рая по по­пу­ляр­но­сти ме­ха­ни­че­ская го­ло­во­лом­ка в мире. Она имеет вид тет­ра­эд­ра, у ко­то­ро­го грани раз­де­ле­ны на 9 рав­но­сто­рон­них тре­уголь­ни­ков со сто­ро­ной 3 см. Все грани Пи­ра­мид­ки раз­но­го цвета. Меф­ферт изоб­рел Пи­ра­мид­ку в 1971 г — почти на 10 лет рань­ше, чем Эрно Рубик при­ду­мал свой зна­ме­ни­тый кубик. Но толь­ко после успе­ха ку­би­ка Ру­би­ка Меф­ферт решил за­па­тен­то­вать свое изоб­ре­те­ние. Эле­мен­ты пи­ра­мид­ки Меф­фер­та: А — «угол­ки» (имеют 3 цвет­ные грани), В — «ребра» (имеют 2 цвет­ные грани), С — «ра­ди­а­то­ры» (имеют 1 цвет­ную грань).

A

B

C

Под каким углом синяя грань Пи­ра­мид­ки на­кло­не­на к жел­той грани?

1)  арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2)  арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби
3)  арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
4)  арк­ко­си­нус дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
29.  
i

Торт в форме ци­лин­дра. Вы­со­та торта 20 см. Диа­метр 30 см. Сред­няя плот­ность торта 0,4 г/см3.

Торт раз­делён ше­стью диа­мет­ра­ми на ку­соч­ки рав­ной ве­ли­чи­ны. Най­ди­те массу каж­до­го ку­соч­ка, если сред­няя плот­ность торта 0,4 г/см3.

1) 450 г
2) 300 г
3) 250 г
4) 350 г
30.  
i

Aлия и Арман ре­ши­ли обла­го­ро­дить свою дачу. Длина всего участ­ка 27 м, а его пло­щадь 405 м2. Вы­со­та дач­но­го до­ми­ка без крыши равна 2,5 м, ши­ри­на в 2 раза боль­ше вы­со­ты, а длина ос­но­ва­ния дач­но­го до­ми­ка на 11 м боль­ше его ши­ри­ны. Во­круг до­ми­ка за­ас­фаль­ти­ро­ва­ли до­рож­ку.

Пло­щадь за­ас­фаль­ти­ро­ван­ной до­рож­ки вме­сте с ос­но­ва­ни­ем дач­но­го до­ми­ка равна 126 м2. Из­вест­но, что ши­ри­на до­рож­ки везде одна и та же. Най­ди­те ши­ри­ну до­рож­ки.

1) 120 см
2) 50 см
3) 100 см
4) 80 см
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = 2 синус x. Уста­но­ви­те со­от­вет­ствия:

A) Нули функ­ции

Б) Об­ласть до­пу­сти­мых зна­че­ний функ­ции

1) [−1; 1]

2)  левая фи­гур­ная скоб­ка 2 Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка

3)  левая фи­гур­ная скоб­ка Пи k: k при­над­ле­жит Z }

4) [−2; 2]

32.  
i

Впи­сан­ная окруж­ность раз­де­ли­ла ги­по­те­ну­зу тре­уголь­ни­ка на от­рез­ки 4 и 6. Уста­но­ви­те со­от­вет­ствие между дли­на­ми ка­те­тов тре­уголь­ни­ка и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Боль­ший катет тре­уголь­ни­ка

Б) Мень­ший катет тре­уголь­ни­ка

1) (3; 5)

2) (7; 9)

3) (6; 7)

4) [5; 6]

33.  
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка 3x минус 4 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x2, ко­эф­фи­ци­ен­том при x и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x2

Б) Ко­эф­фи­ци­ент при x

1) [20; 30)

2) (−25; −20)

3) (−10; 10)

4) [40; 42]

34.  
i

Даны урав­не­ния x в квад­ра­те плюс 8x минус 9 = 0 и 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка = 32. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) −9, 3, 1

2) −1, 0, 2

3) −9, 4, 1

4) 7, 8, 9

35.  
i

У гео­мет­ри­че­ской про­грес­сии  левая круг­лая скоб­ка b_n пра­вая круг­лая скоб­ка из­вест­но, что  b_1=2, q= минус 2. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b5

Б) S5

1) 32

2) 16

3) 11

4) 22

36.  
i

Вы­пол­ни­те дей­ствия  левая круг­лая скоб­ка 3 ко­рень из: на­ча­ло ар­гу­мен­та: 175 конец ар­гу­мен­та минус 5 ко­рень из: на­ча­ло ар­гу­мен­та: 28 конец ар­гу­мен­та плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 63 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в квад­ра­те минус 40 умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 0,027 конец ар­гу­мен­та .

1) 1250
2) 1372
3) 1260
4) 25 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
5)  29 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
6) 1360
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус 67 гра­ду­сов синус 53 гра­ду­сов минус синус 23 гра­ду­сов синус 37 гра­ду­сов .

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3) 0
4) 1
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6) 2
38.  
i

Зна­че­ние суммы пер­вых трех чле­нов воз­рас­та­ю­щей ариф­ме­ти­че­ской про­грес­сии с по­ло­жи­тель­ны­ми чле­на­ми равно 15, а зна­че­ние суммы их квад­ра­тов равно 93. Най­ди­те пятый член этой про­грес­сии.

1) 20
2) 18
3) 14
4) 11
5) 15
6) 12
39.  
i

Ре­ши­те си­сте­му, со­дер­жа­щую од­но­род­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка 3x плюс 5y=2, новая стро­ка 3x в квад­ра­те плюс 10xy минус 25y в квад­ра­те =0. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x_1y_1 плюс x_2y_2.

1)  минус дробь: чис­ли­тель: 17, зна­ме­на­тель: 120 конец дроби
2)  дробь: чис­ли­тель: 11, зна­ме­на­тель: 60 конец дроби
3)  минус дробь: чис­ли­тель: 8, зна­ме­на­тель: 60 конец дроби
4)  дробь: чис­ли­тель: 17, зна­ме­на­тель: 60 конец дроби
5)  минус дробь: чис­ли­тель: 37, зна­ме­на­тель: 60 конец дроби
6)  минус дробь: чис­ли­тель: 16, зна­ме­на­тель: 120 конец дроби
40.  
i

B ос­но­ва­нии пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да лежит пря­мо­уголь­ник со сто­ро­на­ми 3 и 4. Вы­со­та па­рал­ле­ле­пи­пе­да 5. Най­ди­те пло­щадь диа­го­наль­но­го се­че­ния пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да.

1) 20
2) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 625 конец ар­гу­мен­та
4)  ко­рень из: на­ча­ло ар­гу­мен­та: 400 конец ар­гу­мен­та
5) 25
6) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та