Вариант № 6

Реальная версия ЕНТ по математике 2021 года. Вариант 4121

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1

2

3
Тип Д3 A3 № 153
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 4x плюс дробь: чис­ли­тель: 9, зна­ме­на­тель: y конец дроби = 21,17 минус 3x = дробь: чис­ли­тель: 18, зна­ме­на­тель: y конец дроби . конец си­сте­мы .



4

Число 9 раз­би­ли на три сла­га­е­мых так, что вто­рое сла­га­е­мое на 25% мень­ше пер­во­го, а тре­тье — на 1 мень­ше вто­ро­го. Най­ди­те пер­вое сла­га­е­мое



5

6
Тип Д6 A6 № 156
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни y умно­жить на 2 в сте­пе­ни x = 972,y минус x = 3. конец си­сте­мы .



7
Тип Д7 A7 № 157
i

В ариф­ме­ти­че­ской про­грес­сии най­ди­те a7, если a_1 = минус ко­рень из 2 и d = 1 плюс ко­рень из 2 .



8

9
Тип Д9 A9 № 159
i

Из круга ра­ди­у­сом 10 вы­ре­за­ли квад­рат наи­боль­ше­го раз­ме­ра. Пло­щадь остав­шей­ся части круга при  Пи = 3,14 равна



10

Най­ди­те диа­го­наль пря­мо­уголь­ной приз­мы, в ос­но­ва­нии ко­то­рой лежит пря­мо­уголь­ник со сто­ро­на­ми 8 см и 4 ко­рень из 5 см и бо­ко­вое ребро приз­мы 5 см.



11

12

13

14

15

16
Тип Д16 A16 № 166
i

Зна­че­ние част­но­го

 дробь: чис­ли­тель: a в квад­ра­те плюс a минус 6, зна­ме­на­тель: 2 a в квад­ра­те плюс 5 a минус 3 конец дроби : дробь: чис­ли­тель: 3 a в квад­ра­те минус 5 a минус 2, зна­ме­на­тель: 2 a в квад­ра­те плюс a минус 1 конец дроби

равно



17

В окруж­но­сти с цен­тром в точке O по­стро­е­ны па­рал­лель­ные хорды AB и ED. Угол ECD равен 60°, AC = 12. Длина хорды ED равна



18
Тип Д18 A18 № 168
i

На за­во­де ра­бо­та­ют то­ка­ри и сле­са­ри, число ко­то­рых от­но­сит­ся со­от­вет­ствен­но как  дробь: чис­ли­тель: 11, зна­ме­на­тель: 12 конец дроби : дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби . Сколь­ко всего ра­бо­чих на за­во­де, если то­ка­рей на 95 боль­ше, чем сле­са­рей?



19
Тип Д19 A19 № 169
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 5 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 9 пра­вая круг­лая скоб­ка боль­ше или равно 625 в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка , дробь: чис­ли­тель: 4x плюс 5, зна­ме­на­тель: 7 конец дроби минус дробь: чис­ли­тель: 3x плюс 2, зна­ме­на­тель: 4 конец дроби мень­ше или равно дробь: чис­ли­тель: 7 минус 2x, зна­ме­на­тель: 8 конец дроби . конец си­сте­мы .



20
Тип Д20 A20 № 170
i

Дву­гран­ный угол равен 60°. Из точки N на его ребре в гра­нях про­ве­де­ны пер­пен­ди­ку­ляр­ные ребру от­рез­ки NB = 8 см, AN = 2 см. Най­ди­те длину AB.



21
Тип Д21 A21 № 171
i
Развернуть

Если  Пи = 3, то пло­щадь ниж­не­го ос­но­ва­ния равна



22
Тип Д22 A22 № 172
i
Развернуть

Во сколь­ко раз ра­ди­ус верх­не­го ос­но­ва­ния боль­ше, чем ра­ди­ус ниж­не­го ос­но­ва­ния



23
Тип Д23 A23 № 173
i
Развернуть

Вы­со­та ве­дер­ка равна



24
Тип Д24 A24 № 174
i
Развернуть

Объем ве­дер­ки равен  левая круг­лая скоб­ка Пи \approx 3 пра­вая круг­лая скоб­ка



25
Тип Д25 A25 № 175
i
Развернуть

Опре­де­ли­те, сколь­ко нужно крас­ки для по­кры­тия внеш­ней по­верх­но­сти ве­дер­ки (вклю­чая дно), если на 1 дм2 рас­хо­ду­ет­ся 150 г крас­ки  левая круг­лая скоб­ка Пи \approx 3 пра­вая круг­лая скоб­ка .



26
Тип Д26 A26 № 176
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та , зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 125 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та конец дроби .



27
Тип Д27 A27 № 177
i

Кор­ня­ми урав­не­ния  дробь: чис­ли­тель: де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка x в квад­ра­те минус 18 x плюс 100 пра­вая круг­лая скоб­ка минус 2, зна­ме­на­тель: де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка x в квад­ра­те плюс 18 x плюс 100 пра­вая круг­лая скоб­ка конец дроби =0 яв­ля­ют­ся?



28
Тип Д28 A28 № 178
i

Ка­ко­му про­ме­жут­ку при­над­ле­жит сумма (x + y), где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний 5 ко­рень из x плюс 2 ко­рень из y = 7,6 ко­рень из x минус 5 ко­рень из y = 1. конец си­сте­мы .



29

30
Тип Д30 A30 № 180
i

Ука­жи­те ин­тер­ва­лы, удо­вле­тво­ря­ю­щие не­ра­вен­ству: x в квад­ра­те минус |x| минус 6 боль­ше 0.



31

32

33

34
Тип Д34 A34 № 184
i

На­пи­ши­те урав­не­ние общей ка­са­тель­ной к па­ра­бо­лам: y = x в квад­ра­те плюс 4x плюс 8 и x в квад­ра­те плюс 8x плюс 4.



35
Тип Д35 A35 № 185
i

Вы­бе­ри­те из ни­же­пе­ре­чис­лен­ных от­ве­тов де­ли­те­ли числа, рав­но­го зна­че­нию пло­ща­ди бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы, опи­сан­ной около ци­лин­дра, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен  ко­рень из 3 , а вы­со­та равна 3.


Завершить работу, свериться с ответами, увидеть решения.