Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 27425
1.  
i

Вы­чис­ли­те 0,(53) + 1,(2).

1)  целая часть: 1, дроб­ная часть: чис­ли­тель: 20, зна­ме­на­тель: 33
2)  целая часть: 1, дроб­ная часть: чис­ли­тель: 25, зна­ме­на­тель: 33
3)  целая часть: 1, дроб­ная часть: чис­ли­тель: 25, зна­ме­на­тель: 30
4)  целая часть: 2, дроб­ная часть: чис­ли­тель: 25, зна­ме­на­тель: 33
2.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: x в квад­ра­те минус 4, зна­ме­на­тель: 4x в квад­ра­те конец дроби умно­жить на дробь: чис­ли­тель: 2x, зна­ме­на­тель: x плюс 2 конец дроби   и най­ди­те его зна­че­ние при x=4.

1) 1
2) 0
3) 0,25
4) 0,5
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус 54 гра­ду­сов умно­жить на синус 18 гра­ду­сов .

1) 0,125
2) 0,5
3) 1
4) 0,25
4.  
i

Раз­ло­жи­те квад­рат­ный трех­член 4x в квад­ра­те плюс 9x плюс 2 на мно­жи­те­ли.

1)  левая круг­лая скоб­ка 4x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 4x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 4x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка
5.  
i

Ре­ши­те урав­не­ние 16 x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус 17 x в квад­ра­те плюс 1=0.

1)  левая фи­гур­ная скоб­ка минус 2; минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; 2 пра­вая фи­гур­ная скоб­ка
2)  левая фи­гур­ная скоб­ка минус 1 ; 0 ; 1 пра­вая фи­гур­ная скоб­ка
3)  левая фи­гур­ная скоб­ка 0 пра­вая фи­гур­ная скоб­ка
4)  левая фи­гур­ная скоб­ка минус 1 ; минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; 1 пра­вая фи­гур­ная скоб­ка
6.  
i

Ре­ши­те си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний x в квад­ра­те минус y в квад­ра­те =7,3x плюс 3y=63. конец си­сте­мы .

Най­ди­те раз­ность x минус y.
1) 14
2) 147
3) −3
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка ко­си­нус 2x ко­си­нус x плюс синус 2x синус x пра­вая круг­лая скоб­ка dx.

1)  синус x
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби синус x
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби синус x
4)  синус 3x
8.  
i

В рав­но­сто­рон­ний конус впи­сан шар. Най­ди­те пло­щадь по­верх­но­сти шара, если об­ра­зу­ю­щая ко­ну­са равна 6 см.

(При­ме­ча­ние Решу ЕНТ: ви­ди­мо, рав­но­сто­рон­ним ко­ну­сом со­ста­ви­те­ли за­да­ния на­зы­ва­ют такой, у ко­то­ро­го осе­вое се­че­ние — рав­но­сто­рон­ний тре­уголь­ник.)

1) 13 Пи см2
2) 15 Пи см2
3) 16 Пи см2
4) 12 Пи см2
9.  
i

Най­ди­те целые по­ло­жи­тель­ные ре­ше­ния си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний 1 минус 0,5x мень­ше 4 плюс x,9 минус 2,8x боль­ше или равно 6 минус 1,3x. конец си­сте­мы .

1) 0; 1; 2
2) 1; 2; 3; 4
3) 0; 1; 2; 3
4) 1; 2
10.  
i

Ре­ши­те урав­не­ние  ко­си­нус в квад­ра­те x плюс 4 ко­си­нус x минус 5=0 и най­ди­те его корни на x при­над­ле­жит левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
2)  Пи
3) 0
4)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =4 левая круг­лая скоб­ка 3x плюс 2 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та , про­хо­дя­щую через точку  левая круг­лая скоб­ка 1;5 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 24, зна­ме­на­тель: 5 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 16, зна­ме­на­тель: 3 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 4 минус дробь: чис­ли­тель: 24, зна­ме­на­тель: 5 конец дроби умно­жить на 8 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 16, зна­ме­на­тель: 3 конец дроби умно­жить на 8 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
2)  дробь: чис­ли­тель: 24, зна­ме­на­тель: 5 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 16, зна­ме­на­тель: 3 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 77, зна­ме­на­тель: 15 конец дроби
3) x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 16, зна­ме­на­тель: 3 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 4 минус дробь: чис­ли­тель: 24, зна­ме­на­тель: 5 конец дроби умно­жить на 8 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 16, зна­ме­на­тель: 3 конец дроби умно­жить на 8 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка .
4)  дробь: чис­ли­тель: 24, зна­ме­на­тель: 5 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 16, зна­ме­на­тель: 3 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 4 минус дробь: чис­ли­тель: 24, зна­ме­на­тель: 5 конец дроби умно­жить на 8 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 16, зна­ме­на­тель: 3 конец дроби умно­жить на 8 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка .
12.  
i

При каких зна­че­ни­ях пе­ре­мен­ной x зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 5 x плюс 4, зна­ме­на­тель: 2 конец дроби боль­ше или равно зна­че­нию вы­ра­же­ния  дробь: чис­ли­тель: 31 минус 5 x, зна­ме­на­тель: 3 конец дроби .

1)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 2 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
13.  
i

Сто­ро­ны тре­уголь­ни­ка равны 4 см, 6 см и 8 см. Най­ди­те сто­ро­ны по­доб­но­го ему тре­уголь­ни­ка, если ко­эф­фи­ци­ент по­до­бия равен 2. В от­ве­те ука­жи­те сумму длин сто­рон.

1) 32 см
2) 36 см
3) 30 см
4) 40 см
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 2 до 7, дробь: чис­ли­тель: 3, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3x минус 1 конец ар­гу­мен­та конец дроби dx.

1) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та
2) 5
3) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та
4)  ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та
15.  
i

Най­ди­те вы­со­ту пи­ра­ми­ды, в ос­но­ва­нии ко­то­рой рав­но­сто­рон­ний тре­уголь­ник со сто­ро­ной 27 см и каж­дое ребро пи­ра­ми­ды об­ра­зу­ет угол 45° с плос­ко­стью ос­но­ва­ния.

1) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
2) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
4) 9 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
16.  
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: x минус 5 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка конец ар­гу­мен­та =0. В ответ за­пи­ши­те сумму его кор­ней (ко­рень, если он один).

1) −4
2) 4
3) 5
4) 7
17.  
i

Най­ди­те число A, если A = x_1 плюс x_2 плюс y_1 плюс y_2, где { левая круг­лая скоб­ка x_1; y_1 пра­вая круг­лая скоб­ка ; левая круг­лая скоб­ка x_2; y_2 пра­вая круг­лая скоб­ка } яв­ля­ют­ся ре­ше­ни­ем си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний синус в квад­ра­те x плюс ко­си­нус y = 1, ко­си­нус в квад­ра­те x плюс ко­си­нус y = 1. конец си­сте­мы

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи n плюс 4 Пи k, n, k при­над­ле­жит Z
2) 1 плюс 4 Пи n плюс 4 Пи k, n, k при­над­ле­жит Z
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи n плюс 4 Пи k, n, k при­над­ле­жит Z
4) 1 плюс 2 Пи n плюс 2 Пи k, n, k при­над­ле­жит Z
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной двумя пря­мы­ми: y=2x,y=3x,0 мень­ше или равно x мень­ше или равно 4.

1) 2
2) 4
3) 16
4) 8
19.  
i

Cколь­ко сто­рон имеет пра­виль­ный мно­го­уголь­ник, если гра­дус­ная мера его внут­рен­не­го угла равна 160°?

1) 36
2) 12
3) 24
4) 18
20.  
i

Сумма бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии равна 32, а сумма ее пер­вых пяти чле­нов равна 31. Най­ди­те пер­вый член про­грес­сии.

1) 32
2) 16
3) 12
4) 24
21.  
i

Век­тор \overrightarrowAB с на­ча­лом в точке A(3; 6) имеет ко­ор­ди­на­ты (9; 3). Най­ди­те ко­ор­ди­на­ты точки B.

1) (12; 6)
2) (12; 9)
3) (11; 7)
4) (15; 5)
22.  
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: x плюс y минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: xy конец ар­гу­мен­та , зна­ме­на­тель: ко­рень из y минус ко­рень из x конец дроби .

1)  левая круг­лая скоб­ка ко­рень из y плюс ко­рень из x пра­вая круг­лая скоб­ка в квад­ра­те
2)  левая круг­лая скоб­ка ко­рень из y минус ко­рень из x пра­вая круг­лая скоб­ка в квад­ра­те
3)  ко­рень из y плюс ко­рень из x
4)  ко­рень из y минус ко­рень из x
23.  
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию 3 x плюс ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка = 1.

1) −3
2) −3; 1
3) 1
4) 2
24.  
i

Ре­ши­те не­ра­вен­ство \log _ дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби левая круг­лая скоб­ка x в квад­ра­те плюс 3x плюс 4 пра­вая круг­лая скоб­ка боль­ше или равно минус 1.

1) [−2; −1]
2) (−2; −1)
3)  левая квад­рат­ная скоб­ка минус 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
25.  
i

На­пи­ши­те урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в квад­ра­те минус x минус 12 в точке x0  =  5.

1) y = 6x минус 37
2) y = 9x минус 37
3) y = 9x минус 34
4) y = 9x минус 38
26.  
i

Драй­ве­ра­ми в неф­те­до­бы­че стра­ны оста­ют­ся три круп­ных неф­те­га­зо­вых про­ек­та — Тен­гиз, Ка­ра­ча­га­нак и Ка­ша­ган. Они вно­сят су­ще­ствен­ный вклад в эко­но­ми­че­ский рост стра­ны в сред­не­сроч­ном пе­ри­о­де. Объем до­бы­чи нефти будет расти и по про­гно­зу Ми­ни­стер­ства энер­ге­ти­ки РК к 2025 году вый­дет на уро­вень в 105 млн. тонн в год. Для этого, на всех трех ме­сто­рож­де­ни­ях, ре­а­ли­зу­ют­ся про­ек­ты даль­ней­ше­го рас­ши­ре­ния и про­дле­ния до­бы­чи.

B 2020 году до­бы­ча нефти со­ста­ви­ла 91 млн тонн в год. На сколь­ко про­цен­тов пла­ни­ру­ет­ся по­вы­ше­ние до­бы­чи нефти к 2025 году (ответ округ­ли­те до целых)?

1) на 20%
2) на 18%
3) на 12%
4) на 15%
27.  
i

Драй­ве­ра­ми в неф­те­до­бы­че стра­ны оста­ют­ся три круп­ных неф­те­га­зо­вых про­ек­та — Тен­гиз, Ка­ра­ча­га­нак и Ка­ша­ган. Они вно­сят су­ще­ствен­ный вклад в эко­но­ми­че­ский рост стра­ны в сред­не­сроч­ном пе­ри­о­де. Объем до­бы­чи нефти будет расти и по про­гно­зу Ми­ни­стер­ства энер­ге­ти­ки РК к 2025 году вый­дет на уро­вень в 105 млн. тонн в год. Для этого, на всех трех ме­сто­рож­де­ни­ях, ре­а­ли­зу­ют­ся про­ек­ты даль­ней­ше­го рас­ши­ре­ния и про­дле­ния до­бы­чи.

Oпре­де­ли­те гра­дус­ную меру сек­то­ра, со­от­вет­ству­ю­ще­го объ­е­му до­бы­чи нефти су­пер­ги­ган­том «Тен­гиз­шев­ройл» на кру­го­вой диа­грам­ме (ответ округ­ли­те до целых).

1) 82°
2) 123°
3) 114°
4) 74°
28.  
i

Драй­ве­ра­ми в неф­те­до­бы­че стра­ны оста­ют­ся три круп­ных неф­те­га­зо­вых про­ек­та — Тен­гиз, Ка­ра­ча­га­нак и Ка­ша­ган. Они вно­сят су­ще­ствен­ный вклад в эко­но­ми­че­ский рост стра­ны в сред­не­сроч­ном пе­ри­о­де. Объем до­бы­чи нефти будет расти и по про­гно­зу Ми­ни­стер­ства энер­ге­ти­ки РК к 2025 году вый­дет на уро­вень в 105 млн. тонн в год. Для этого, на всех трех ме­сто­рож­де­ни­ях, ре­а­ли­зу­ют­ся про­ек­ты даль­ней­ше­го рас­ши­ре­ния и про­дле­ния до­бы­чи.

Oпре­де­ли­те объем до­бы­чи нефти в 2020 году не­дро­поль­зо­ва­те­лем НКОК «Ка­ша­ган» в млн тонн (ответ округ­ли­те до де­ся­тых)

1) 15,2 млн тонн
2) 13,3 млн тонн
3) 10,2 млн тонн
4) 10,8 млн тонн
29.  
i

Дет­ское ве­дер­ко имеет форму усе­чен­но­го ко­ну­са с диа­мет­ра­ми ос­но­ва­нии 10 см и 34 см (ниж­нее ос­но­ва­ние мень­ше верх­не­го), об­ра­зу­ю­щей 13 см.

Объем ве­дер­ки равен  левая круг­лая скоб­ка Пи \approx 3 пра­вая круг­лая скоб­ка

1) 2125 см3
2) 3524 см3
3) 1995 см3
4) 1847 см3
30.  
i

Для тру­до­устрой­ства на пред­при­я­тие при­сла­ли ре­зю­ме 3 эко­но­ми­ста, 5 ме­не­дже­ров и 4 про­грам­ми­ста.

Bычис­ли­те ве­ро­ят­ность, что из всех, по­дав­ших ре­зю­ме, тру­до­устро­ят­ся 2 эко­но­ми­ста, 3 ме­не­дже­ра и 3 про­грам­ми­ста (ответ округ­ли­те до сотых).

1) 0,12
2) 0,24
3) 0,15
4) 0,21
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = 4 ко­си­нус x минус 4. Уста­но­ви­те со­от­вет­ствия:

A) Нули функ­ции

Б) Об­ласть до­пу­сти­мых зна­че­ний функ­ции

1) [−8; 0]

2)  левая фи­гур­ная скоб­ка Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка

3)  левая фи­гур­ная скоб­ка 2 Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка

4) [−4; 4]

32.  
i

Вы­со­та рав­но­бед­рен­но­го тре­уголь­ни­ка равна 4, ос­но­ва­ние равно 6. Уста­но­ви­те со­от­вет­ствие между пло­ща­дью тре­уголь­ни­ка, ра­ди­у­сом окруж­но­сти, опи­сан­ной около него и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Пло­щадь тре­уголь­ни­ка

Б) Ра­ди­ус окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка

1)  дробь: чис­ли­тель: 25, зна­ме­на­тель: 8 конец дроби

2) 12

3) 24

4) 16

33.  
i

Най­ди­те два на­ту­раль­ных числа a и b, если из­вест­но, что от­но­ше­ние чисел a и b равно 5, а от­но­ше­ние раз­но­сти их квад­ра­тов этих чисел к их сумме равно 8.

A) Число a при­над­ле­жит про­ме­жут­ку

Б) Число b при­над­ле­жит про­ме­жут­ку

1) (9; 12)

2) [4; 6)

3) (1; 2]

4) (7; 9)

34.  
i

При по­мо­щи гра­фи­ка функ­ции y = ||x плюс 1| минус 2| вы­яс­ни­те, сколь­ко ре­ше­ний имеет урав­не­ние ||x плюс 1| минус 2| = a в за­ви­си­мо­сти от зна­че­ний па­ра­мет­ра a. Уста­но­ви­те со­от­вет­ствие между зна­че­ни­я­ми па­ра­мет­ра a и ко­ли­че­ством ре­ше­ний урав­не­ния

A) a мень­ше 0

Б) 0 мень­ше a мень­ше 2

1) 3

2) 4

3) 0

4) 2

35.  
i

Вто­рой член ариф­ме­ти­че­ской про­грес­сии (an) на 7,2 боль­ше ше­сто­го члена. Чет­вер­тый член про­грес­сии равен 0,7. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) d

Б) a1

1) −2,4

2) 6,1

3) −1,8

4) 7,9

36.  
i

Упро­сти­те: | ко­рень из 7 плюс ко­рень из 5 минус 4| плюс | ко­рень из 7 плюс ко­рень из 5 минус 5|.

1) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 1
2) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
3) 1
4) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та плюс 1
5) 2
6) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та минус 1
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус 68 гра­ду­сов ко­си­нус 23 гра­ду­сов минус ко­си­нус 68 гра­ду­сов синус 23 гра­ду­сов .

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3) 0
4) 1
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6) 2
38.  
i

Tело, падая с не­ко­то­рой вы­со­ты, про­хо­дит в первую се­кун­ду 4,5 м, а каж­дую сле­ду­ю­щую — на 5,8 м боль­ше. С какой вы­со­ты упало тело, если па­де­ние про­дол­жа­лось 11 с?

1)  целая часть: 72, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2 м
2)  целая часть: 62, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2 м
3) 343,75 м
4) 72,5 м
5)  целая часть: 368, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2 м
6) 368,5 м
39.  
i

Ре­ши­те си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус y в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка =15, новая стро­ка x в кубе y минус xy в кубе =6. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x_1y_1 плюс x_2y_2.

1) −2
2) 4
3) 3
4)  ко­рень из: на­ча­ло ар­гу­мен­та: 16 конец ар­гу­мен­та
5) −4
6)  ко­рень из 9
40.  
i

От­ре­зок DC пер­пен­ди­ку­ля­рен плос­ко­сти пря­мо­уголь­но­го тре­уголь­ни­ка ABC, ∠B  =  90°. Тре­уголь­ник ACD рав­но­бед­рен­ный. Из пе­ре­чис­лен­ных ниже от­ве­тов най­ди­те те, ко­то­рые равны зна­че­нию синус угла между плос­ко­стью ADB и ABC, если AD = 5 ко­рень из 2 , AB  =  3.

1)  дробь: чис­ли­тель: 5 ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та , зна­ме­на­тель: 41 конец дроби
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 41 конец дроби
3)  дробь: чис­ли­тель: 5, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та конец дроби
4)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та , зна­ме­на­тель: 41 конец дроби
5)  левая круг­лая скоб­ка дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та , зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
6)  дробь: чис­ли­тель: 5 ко­рень из 5 , зна­ме­на­тель: 41 конец дроби