Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 28924
1.  
i

За­пи­ши­те в виде обык­но­вен­ной дроби бес­ко­неч­ную пе­ри­о­ди­че­скую де­ся­тич­ную дробь 21,00(12).

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 825 конец дроби
2)  целая часть: 21, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 625
3)  целая часть: 21, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 825
4)  целая часть: 12, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 825
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 2 левая круг­лая скоб­ка x в квад­ра­те минус y пра­вая круг­лая скоб­ка , зна­ме­на­тель: x минус 6 конец дроби минус 2x плюс дробь: чис­ли­тель: 3x минус y, зна­ме­на­тель: 6 минус x конец дроби при x  =  −1, y  =  5.

1) 7
2) 12
3) 0
4) 2
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  левая круг­лая скоб­ка ко­си­нус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби плюс ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби минус синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби пра­вая круг­лая скоб­ка .

1)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2) 1
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4.  
i

При­ве­ди­те од­но­член 3a в кубе b в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка a в сте­пе­ни 8 b в сте­пе­ни 4 к стан­дарт­но­му виду.

1) 3a в сте­пе­ни левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка
2) 3a в сте­пе­ни левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка b в кубе
3) 3a в кубе b в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
4) a в сте­пе­ни левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка b в кубе
5.  
i

Най­ди­те от­ри­ца­тель­ный ко­рень урав­не­ния 8|x| минус 5|x| минус 17=0.

1)  минус целая часть: 5, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 5
2)  минус целая часть: 5, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3
3)  минус целая часть: 5, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 5
4)  минус целая часть: 5, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3
6.  
i

Pешите си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 3x плюс 5y = 16,2x плюс 3y = 9. конец си­сте­мы .

1) (3; −5)
2) (−3; −5)
3) (−3; 3)
4) (−3; 5)
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка минус e в сте­пе­ни левая круг­лая скоб­ка минус 2x пра­вая круг­лая скоб­ка плюс 2e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка минус 2x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби плюс 4e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка плюс C
2)  дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка минус 2x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби плюс 4e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка плюс C
3)  дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка минус 2x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби плюс 4e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка плюс C
4)  дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби плюс 4e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка плюс C
8.  
i

Опре­де­ли­те длину диа­го­на­ли осе­во­го се­че­ния ци­лин­дра с ра­ди­у­сом 5 см и вы­со­той 24 см.

1) 32 см
2) 26 см
3) 30 см
4) 27 см
9.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний x левая круг­лая скоб­ка 2x минус 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка боль­ше или равно 0,x в квад­ра­те минус 3x мень­ше 0. конец си­сте­мы .

1) (2; 3)
2) [2; 3)
3) [0; 3]
4) (2; 3]
10.  
i

Ре­ши­те урав­не­ние:  синус 3x ко­си­нус 3x = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 3 конец дроби , k при­над­ле­жит Z
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 3 конец дроби , k при­над­ле­жит Z
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 6 конец дроби , k при­над­ле­жит Z
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 3 конец дроби , k при­над­ле­жит Z
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 4x в кубе минус 3x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка 3;4 пра­вая круг­лая скоб­ка .

1) x в сте­пе­ни левая круг­лая скоб­ка 8 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 2726, зна­ме­на­тель: 7 конец дроби
2) x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка
3) x в квад­ра­те минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 2726, зна­ме­на­тель: 7 конец дроби
4) x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 6022, зна­ме­на­тель: 7 конец дроби .
12.  
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 7, зна­ме­на­тель: 2x минус 3 конец дроби мень­ше 0.

1)  левая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая круг­лая скоб­ка
13.  
i

Cто­ро­ны тре­уголь­ни­ка от­но­сят­ся как 3 : 5 : 7. Най­ди­те пе­ри­метр по­доб­но­го ему тре­уголь­ни­ка, в ко­то­ром сумма наи­боль­шей и наи­мень­шей сто­рон равна 36 см.

1) 54 см
2) 58 см
3) 27 см
4) 56 см
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 0 до 1, ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та dx.

1)  дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 2, зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 2, зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 2, зна­ме­на­тель: 5 конец дроби
4)  дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 2, зна­ме­на­тель: 3 конец дроби
15.  
i

Най­ди­те объем пра­виль­ной че­ты­рех­уголь­ной усе­чен­ной пи­ра­ми­ды, если сто­ро­ны ее ос­но­ва­ния 1 см и 9 см, а вы­со­та 6 см.

1) 162 см3
2) 182 см3
3) 152 см3
4) 180 см3
16.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния 2x умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 7x плюс 18 конец ар­гу­мен­та =x в квад­ра­те плюс 7x плюс 18.

1) 5
2) 7
3) 9
4) 12
17.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: x минус 6 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x минус 12 конец ар­гу­мен­та мень­ше x минус 1,2x минус 3 мень­ше 33. конец си­сте­мы .

1) (12; 18)
2) [12; 18)
3) [12; 20)
4) [12; 18]
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y= минус x в квад­ра­те плюс 2x,y= минус x минус 1.

1)  дробь: чис­ли­тель: 13 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 конец дроби
2)  дробь: чис­ли­тель: 13 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 конец дроби
3)  дробь: чис­ли­тель: 13 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 конец дроби
4)  дробь: чис­ли­тель: 13 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 конец дроби
19.  
i

Сто­ро­ны па­рал­ле­ло­грам­ма равны 5 см и 6 см, а одна из диа­го­на­лей равна 7 см. Най­ди­те наи­мень­шую вы­со­ту па­рал­ле­ло­грам­ма.

1) 8 см
2) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та см
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та см
4) 4 см
20.  
i

Сумма пер­вых трех чле­нов ариф­ме­ти­че­ской про­грес­сии равна 27, а сумма по­след­них трех чле­нов дан­ной про­грес­сии равна 45. Сколь­ко чле­нов в за­дан­ной ариф­ме­ти­че­ской про­грес­сии, если ее пер­вый член равен 7?

1) 3
2) 4
3) 5
4) 6
21.  
i

Какой век­тор нужно вы­честь из вы­ра­же­ния \overrightarrowAM плюс \overrightarrowDC минус \overrightarrowDM минус \overrightarrowDA плюс \overrightarrowCB, чтобы по­лу­чил­ся \vec0?

1) \overrightarrowBD
2) \overrightarrowMB
3) \overrightarrowMD
4) \overrightarrowAC
22.  
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: a в сте­пе­ни 4 умно­жить на a в сте­пе­ни левая круг­лая скоб­ка минус 7 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка a в квад­ра­те пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка конец дроби .

1) a−5
2) a3
3) a−2
4) a5
23.  
i

Ре­ши­те урав­не­ние  де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка = де­ся­тич­ный ло­га­рифм дробь: чис­ли­тель: x плюс 2, зна­ме­на­тель: x минус 3 конец дроби .

1) 4
2) 2
3) −2
4) 1
24.  
i

Ре­ши­те не­ра­вен­ство \log _ дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби левая круг­лая скоб­ка x в квад­ра­те плюс 4x плюс 12 пра­вая круг­лая скоб­ка боль­ше минус 2.

1)  левая круг­лая скоб­ка 1;3 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка минус 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус 3; минус 1 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3x в кубе плюс 2x в квад­ра­те минус x плюс 1,x_0= минус 5.

1) y = 204x плюс 5
2) y = 204x плюс 701
3) y = минус 204x плюс 701
4) y = 204x минус 319
26.  
i

Для из­го­тов­ле­ния сталь­ных ди­зай­нер­ских шаров, завод по­лу­чил за­го­тов­ки в виде куба. Про­грамм­ная уста­нов­ка для об­та­чи­ва­ния де­та­лей тре­бу­ет ввода ко­ор­ди­нат за­го­тов­ки в трёхмер­ном про­стран­стве. Про­грам­мист вво­дит си­сте­му ко­ор­ди­нат в вер­ши­ну куба как по­ка­за­но на ри­сун­ке.

Опре­де­ли­те ко­ор­ди­на­ты точки B.

1) (4; 4; 0)
2) (4; 0; 4)
3) (4; 4; 4)
4) (0; 4; 0)
27.  
i

Айша из­го­то­ви­ла ко­ну­со­об­раз­ный го­лов­ной убор  — кол­пак (см. рис.).

H=24 см, R=7 см

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, π ≈ 3.

1) 525 см2
2) 500 см2
3) 540 см2
4) 532 см2
28.  
i

Пи­ра­мид­ка — это вто­рая по по­пу­ляр­но­сти ме­ха­ни­че­ская го­ло­во­лом­ка в мире. Она имеет вид тет­ра­эд­ра, у ко­то­ро­го грани раз­де­ле­ны на 9 рав­но­сто­рон­них тре­уголь­ни­ков со сто­ро­ной 3 см. Все грани Пи­ра­мид­ки раз­но­го цвета. Меф­ферт изоб­рел Пи­ра­мид­ку в 1971 г — почти на 10 лет рань­ше, чем Эрно Рубик при­ду­мал свой зна­ме­ни­тый кубик. Но толь­ко после успе­ха ку­би­ка Ру­би­ка Меф­ферт решил за­па­тен­то­вать свое изоб­ре­те­ние. Эле­мен­ты пи­ра­мид­ки Меф­фер­та: А — «угол­ки» (имеют 3 цвет­ные грани), В — «ребра» (имеют 2 цвет­ные грани), С — «ра­ди­а­то­ры» (имеют 1 цвет­ную грань).

A

B

C

Под каким углом синяя грань Пи­ра­мид­ки на­кло­не­на к жел­той грани?

1)  арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2)  арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби
3)  арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
4)  арк­ко­си­нус дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
29.  
i

Учи­тель дал до­маш­нее прак­ти­че­ское за­да­ние по гео­мет­рии. Сде­лать макет приз­мы и со­ста­вить к ним за­да­ния. Самат под­го­то­вил макет пра­виль­ной ше­сти­уголь­ной приз­мы со сто­ро­ной ос­но­ва­ния рав­ной 1, а бо­ко­вое ребро 2 и со­ста­вил сле­ду­ю­щие за­да­ния.

Опре­де­ли­те угол между пря­мой AD1 и плос­ко­стью ABCDEF.

1) 30°
2) 90°
3) 60°
4) 45°
30.  
i

Стро­и­тель­ной ком­па­нии дали за­да­ние по­стро­ить дет­скую иг­ро­вую пло­щад­ку, в ко­то­рой дол­жен быть домик в виде башни. Ко­ни­че­ская крыша башни имеет диа­метр 6 м и вы­со­ту 2 м. Для этого ку­пи­ли листы кро­вель­но­го же­ле­за раз­ме­ра­ми 0,7 м × 1,4 м. На швы и об­рез­ки тра­тит­ся 10 % от пло­ща­ди крыши.

Во сколь­ко раз уве­ли­чит­ся объем ко­ну­са, если его ра­ди­ус уве­ли­чить в 4 раза, а вы­со­ту оста­вить преж­ней?

1) в 24 раза
2) в 64 раза
3) в 13 раз
4) в 16 раз
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = 2 синус x. Уста­но­ви­те со­от­вет­ствия:

A) Нули функ­ции

Б) Об­ласть до­пу­сти­мых зна­че­ний функ­ции

1) [−1; 1]

2)  левая фи­гур­ная скоб­ка 2 Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка

3)  левая фи­гур­ная скоб­ка Пи k: k при­над­ле­жит Z }

4) [−2; 2]

В ци­линдр впи­сан шар, ра­ди­ус ко­то­ро­го равен 6. Уста­но­ви­те со­от­вет­ствие между пло­ща­дью пол­ной по­верх­но­сти ци­лин­дра, объ­е­мом ци­лин­дра и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Пло­щадь пол­ной по­верх­но­сти ци­лин­дра

Б) Объем ци­лин­дра

1) 324π

2) 432π

3) 216π

4) 288π

33.  
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка 3x минус 4 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x2, ко­эф­фи­ци­ен­том при x и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x2

Б) Ко­эф­фи­ци­ент при x

1) [20; 30)

2) (−25; −20)

3) (−10; 10)

4) [40; 42]

Даны урав­не­ния 3 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 2x пра­вая круг­лая скоб­ка = 27 и  ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та плюс 1 = x. Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем пер­во­го урав­не­ния, но не яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) −1

2) 2

3) 3

4) 1

35.  
i

Дана гео­мет­ри­че­ская про­грес­сия (bn), где b3  =  18 и b6  =  486. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем

A) S5

Б) 15 умно­жить на b_2

1) 240

2) 90

3) 30

4) 242

36.  
i

Вы­пол­ни­те дей­ствия  левая круг­лая скоб­ка 3 ко­рень из: на­ча­ло ар­гу­мен­та: 175 конец ар­гу­мен­та минус 5 ко­рень из: на­ча­ло ар­гу­мен­та: 28 конец ар­гу­мен­та плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 63 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в квад­ра­те минус 40 умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 0,027 конец ар­гу­мен­та .

1) 1250
2) 1372
3) 1260
4) 25 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
5)  29 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
6) 1360
37.  
i

Их пе­ре­чис­лен­ных ниже от­ве­тов вы­бе­ри­те те, ко­то­рые равны зна­че­нию вы­ра­же­ния  ко­си­нус 60 гра­ду­сов плюс \ctg дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
2) 1
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби
5)  целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
6) 0
38.  
i

Eсли в ариф­ме­ти­че­ской про­грес­сии a_6 плюс a_9 плюс a_12 плюс a_15 = 20, то S20 равна?

1) 10 в квад­ра­те
2) 10 в кубе
3) 150
4) 15 умно­жить на 10
5) 200
6) 100
39.  
i

Ре­ши­те си­сте­му, со­дер­жа­щую од­но­род­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка 3x плюс 5y=2, новая стро­ка 3x в квад­ра­те плюс 10xy минус 25y в квад­ра­те =0. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x_1y_1 плюс x_2y_2.

1)  минус дробь: чис­ли­тель: 17, зна­ме­на­тель: 120 конец дроби
2)  дробь: чис­ли­тель: 11, зна­ме­на­тель: 60 конец дроби
3)  минус дробь: чис­ли­тель: 8, зна­ме­на­тель: 60 конец дроби
4)  дробь: чис­ли­тель: 17, зна­ме­на­тель: 60 конец дроби
5)  минус дробь: чис­ли­тель: 37, зна­ме­на­тель: 60 конец дроби
6)  минус дробь: чис­ли­тель: 16, зна­ме­на­тель: 120 конец дроби
40.  
i

Из ко­ну­са вы­ре­за­ли шар наи­боль­ше­го объёма. Най­ди­те от­но­ше­ние объёма сре­зан­ной части ко­ну­са к объёму шара, если осе­вое се­че­ние ко­ну­са — рав­но­сто­рон­ний тре­уголь­ник.

1)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби