Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 22948
1.  
i

Пред­ставь­те бес­ко­неч­ную де­ся­тич­ную пе­ри­о­ди­че­скую дробь 0,(03) в виде обык­но­вен­ной дроби.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби
2)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 29 конец дроби
3)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 27 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 33 конец дроби
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: a левая круг­лая скоб­ка b минус 3a пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 3a в квад­ра­те минус ab конец дроби минус 3a при a=2,18, b= минус 5,6.

1) 5,6
2) 0
3) −5,6
4) 0,6
3.  
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: ко­си­нус 42 гра­ду­сов плюс синус в квад­ра­те 21 гра­ду­сов , зна­ме­на­тель: ко­си­нус в квад­ра­те 21 гра­ду­сов конец дроби плюс 1.

1)  ко­си­нус 21 гра­ду­сов
2) 2
3)  синус 42 гра­ду­сов
4) 0
4.  
i

При­ве­ди­те од­но­член 8a в квад­ра­те b в квад­ра­те a в сте­пе­ни 4 b к стан­дарт­но­му виду.

1) 8a в квад­ра­те b в квад­ра­те
2) 8a в сте­пе­ни 6 b в кубе
3) a в сте­пе­ни 6 b в кубе
4) 8a в сте­пе­ни 4 b
5.  
i

Най­ди­те корни урав­не­ния: |2x минус 6| = 10.

1) −10; 4
2) −2; 8
3) −8; 2
4) −2; 6
6.  
i

Най­ди­те сумму  левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка плюс 81 в сте­пе­ни x = 82,3y в квад­ра­те минус x = 2, конец си­сте­мы . при­чем y < 0.

1) 3
2) 1
3) 0
4) 2
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка плюс 3x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 2x в кубе минус 4 пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 конец дроби минус дробь: чис­ли­тель: 3x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби минус 4x плюс C
2)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 конец дроби плюс дробь: чис­ли­тель: 3x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби минус дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби минус 4x плюс C
3)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 конец дроби плюс дробь: чис­ли­тель: 3x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби минус 4x плюс C
4)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 конец дроби минус дробь: чис­ли­тель: 3x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби плюс 4x плюс C
8.  
i

Bысота ко­ну­са равна 30 см, а длина об­ра­зу­ю­щей — 34 см. Най­ди­те диа­метр ко­ну­са.

1) 33 см
2) 30 см
3) 32 см
4) 31 см
9.  
i

Най­ди­те наи­мень­шее целое ре­ше­ние си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний 5 минус дробь: чис­ли­тель: 2, зна­ме­на­тель: x плюс 3 конец дроби боль­ше или равно 0, дробь: чис­ли­тель: 4x минус 7, зна­ме­на­тель: 2x плюс 3 конец дроби мень­ше 2 конец си­сте­мы .

1) −2
2) −1
3) 1
4) 2
10.  
i

Какое из при­ве­ден­ных урав­не­ний не имеет кор­ней?

1)  синус x= дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
2)  тан­генс x= дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
3) \ctg x= минус дробь: чис­ли­тель: 2, зна­ме­на­тель: ко­рень из 3 конец дроби
4)  ко­си­нус x= дробь: чис­ли­тель: 2, зна­ме­на­тель: ко­рень из 3 конец дроби
11.  
i

Най­ди­те про­из­вод­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = минус 3\ln левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка .

1) −3
2)  минус 3x
3)  минус 3 в сте­пе­ни левая круг­лая скоб­ка \ln левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка
4)  дробь: чис­ли­тель: минус 3, зна­ме­на­тель: x плюс 1 конец дроби
12.  
i

Най­ди­те пару чисел (x; y), вы­бе­ри­те ту, ко­то­рая не удо­вле­тво­ря­ет ре­ше­нию не­ра­вен­ства: 4x минус 5 боль­ше или равно y.

1) (5; 2)
2) (2; 1)
3) (3; −1)
4) (−3; −4)
13.  
i

Точки A(1; 1), B(3; 5) и C(7; 3) со­от­вет­ствен­но вер­ши­ны тре­уголь­ни­ка ABC. Длина ме­ди­а­ны BM равна

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та
3) 3
4) 4
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 7 до 11, левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби пра­вая круг­лая скоб­ка в квад­ра­те dx.

1)  дробь: чис­ли­тель: 74240, зна­ме­на­тель: 221 конец дроби
2)  дробь: чис­ли­тель: 74240, зна­ме­на­тель: 231 конец дроби
3)  дробь: чис­ли­тель: 73540, зна­ме­на­тель: 227 конец дроби
4)  дробь: чис­ли­тель: 75670, зна­ме­на­тель: 223 конец дроби
15.  
i

Bо сколь­ко раз уве­ли­чит­ся объем куба, если его ребра уве­ли­чить в 7 раз.

1) в 144 раз
2) в 125 раз
3) в 14 раз
4) в 343 раз
16.  
i

Ре­ши­те урав­не­ние  дробь: чис­ли­тель: 2, зна­ме­на­тель: x конец дроби = дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 минус 4x конец ар­гу­мен­та , зна­ме­на­тель: x в квад­ра­те конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 минус 4x конец ар­гу­мен­та конец дроби .

1) 0
2) 5
3) 1
4) 2
17.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 2 x плюс ло­га­рифм по ос­но­ва­нию 2 y=4, x плюс 2y=6. конец си­сте­мы .

1) (2; 3), (6; 1)
2) (4; 1), (2; 2)
3) (2; 2)
4) (1; 3), (2; 1)
18.  
i

Пло­щадь фи­гу­ры, огра­ни­чен­ной гра­фи­ка­ми функ­ций y=x в квад­ра­те минус 1 и y=x плюс 1 равна

1) 10,5
2) 5
3) 7
4) 4,5
19.  
i

Из­вест­но, что  бета минус альфа = 40 гра­ду­сов . От­но­ше­ние  дробь: чис­ли­тель: бета , зна­ме­на­тель: альфа конец дроби равно:

1) 1,6
2) 3,2
3) 2,4
4) 2,6
20.  
i

Hай­ди­те S, где S — сумма бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии:  дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби 81; ...

1) S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
2) S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 16 конец дроби
3) S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби
4) S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби
21.  
i

На ри­сун­ке изоб­ра­жен рав­но­сто­рон­ний тре­уголь­ник ABC. Най­ди­те длины век­то­ров \overrightarrowAB минус \overrightarrowAC и \overrightarrowAB плюс \overrightarrowAC, если сто­ро­ны тре­уголь­ни­ка равны 9 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

1) 9 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ,9
2) 10 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ,25
3) 9 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ,27
4) 9 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ,21
22.  
i

Упро­сти­те вы­ра­же­ние  левая круг­лая скоб­ка минус 3 a в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка b в квад­ра­те пра­вая круг­лая скоб­ка в кубе .

1)  минус 9 a в сте­пе­ни левая круг­лая скоб­ка 18 пра­вая круг­лая скоб­ка b в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка
2)  минус 27 a в сте­пе­ни левая круг­лая скоб­ка 9 пра­вая круг­лая скоб­ка b в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка
3)  минус 27 a в сте­пе­ни левая круг­лая скоб­ка 18 пра­вая круг­лая скоб­ка b в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка
4) 27 a в сте­пе­ни левая круг­лая скоб­ка 18 пра­вая круг­лая скоб­ка b в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка
23.  
i

Ре­ши­те урав­не­ние: 4 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка 2x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2x минус 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка = 2 ко­рень 3 сте­пе­ни из 2 .

1) 4
2) 3
3) 8
4) 9
24.  
i

Ре­ши­те не­ра­вен­ство  ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 3 конец ар­гу­мен­та боль­ше или равно ко­рень из: на­ча­ло ар­гу­мен­та: 4x минус 1 конец ар­гу­мен­та .

1)  левая квад­рат­ная скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2) нет ре­ше­ний
3)  левая квад­рат­ная скоб­ка 1;2 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;2 пра­вая квад­рат­ная скоб­ка
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =4 минус 2x минус x в квад­ра­те ,x_0=4.

1) y = минус 10x минус 20
2) y = минус 10x плюс 40
3) y = минус 10x плюс 20
4) y = минус 10x плюс 60
26.  
i

Гра­нит­ный по­ста­мент для уста­нов­ки ме­мо­ри­аль­ной плиты имеет форму пра­виль­ной усе­чен­ной пи­ра­ми­ды, верх­няя пло­щад­ка — квад­рат сто­ро­ной 2 метра, сто­ро­на ниж­не­го ос­но­ва­ния 10 мет­ров, его вы­со­та 7 мет­ров.

Опре­де­лить объем по­ста­мен­та. Ответ округ­лить до целых.

1) 290 м3
2) 289 м3
3) 287 м3
4) 288 м3
27.  
i

Пер­вый этаж дома со­сто­ит из ком­на­ты и ко­ри­до­ра пря­мо­уголь­ной формы, а также из кухни и ван­ной ком­на­ты квад­рат­ной формы. Вы­со­та по­тол­ков со­став­ля­ет 2,5 м.

Опре­де­ли­те пло­щадь пер­во­го этажа дома.

1) 202 м2
2) 200 м2
3) 188 м2
4) 206 м2
28.  
i

Пер­вый этаж дома со­сто­ит из ком­на­ты и ко­ри­до­ра пря­мо­уголь­ной формы, а также из кухни и ван­ной ком­на­ты квад­рат­ной формы. Вы­со­та по­тол­ков со­став­ля­ет 2,5 м.

К се­мей­но­му празд­ни­ку ре­ши­ли ку­пить гир­лян­ды и укра­сить ком­на­ту. Для этого не­об­хо­ди­мо вы­пол­нить сле­ду­ю­щие из­ме­ре­ния: каж­дый ниж­ний угол ком­на­ты ровно со­еди­нить с ос­но­ва­ни­ем люст­ры, на­хо­дя­щей­ся в цен­тре по­тол­ка ком­на­ты. Сколь­ко мет­ров гир­лян­ды для этого по­на­до­бит­ся (ответ округ­лить до целых).

1) 31 м
2) 29 м
3) 20 м
4) 40 м
29.  
i

Зда­ние-мо­не­та

b — тол­щи­на, d — малый диа­метр,

H — вы­со­та, L — длина ос­но­ва­ния.

В ки­тай­ском го­ро­де Гу­ан­чжоу на­хо­дит­ся уни­каль­ное зда­ние в форме огром­но­го диска с от­вер­сти­ем внут­ри. Ита­льян­ская ком­па­ния, раз­ра­бо­тав­шая про­ект, утвер­жда­ет, что в ос­но­ву формы легли неф­ри­то­вые диски, ко­то­ры­ми вла­де­ли древ­ние ки­тай­ские пра­ви­те­ли и знать. Они сим­во­ли­зи­ро­ва­ли вы­со­кие нрав­ствен­ные ка­че­ства че­ло­ве­ка. Кроме того, вме­сте со своим от­ра­же­ни­ем в Жем­чуж­ной реке, на ко­то­рой стоит зда­ние, оно об­ра­зу­ет цифру 8, что озна­ча­ет у ки­тай­цев число «Сча­стье».

Зда­ние-мо­не­та имеет тол­щи­ну 30 м, вы­со­ту 138 м и в цен­тре круга рас­по­ло­же­но круг­лое от­вер­стие диа­мет­ром 48 м, ко­то­рое имеет функ­ци­о­наль­ное, а не толь­ко ди­зай­нер­ское зна­че­ние. Во­круг него будет рас­по­ло­же­на ос­нов­ная тор­го­вая зона. Зда­ние яв­ля­ет­ся самым вы­со­ким среди круг­лых зда­ний в мире и на­счи­ты­ва­ет 33 этажа, а его общая пло­щадь со­став­ля­ет 85 000 м2.

В бу­ду­щем ар­хи­тек­то­ры пла­ни­ру­ют ли­це­вую и зад­нюю сто­ро­ны зда­ния, то есть 2 «диска» пол­но­стью за­мо­стить стек­лом. Най­ди­те, сколь­ко квад­рат­ных мет­ров стек­ла для этого по­на­до­бит­ся. При­ми­те  Пи \approx 3,1416, ответ округ­ли­те до целых.

(Для ре­ше­ния за­да­чи не­об­хо­ди­мо ис­поль­зо­вать каль­ку­ля­тор.)

1) 27 470 м2
2) 30 153 м2
3) 29 783 м2
4) 26 654 м2
30.  
i

Пер­вый этаж дома со­сто­ит из ком­на­ты и ко­ри­до­ра пря­мо­уголь­ной формы, а также из кухни и ван­ной ком­на­ты квад­рат­ной формы. Вы­со­та по­тол­ков со­став­ля­ет 2,5 м.

Сколь­ко нужно за­пла­тить за ленту, ко­то­рой было ре­ше­но укра­сить стены одним рядом по пе­ри­мет­ру ком­на­ты, если 60 м такой ленты стоят 450 тенге.

1) 250 тенге
2) 200 тенге
3) 550 тенге
4) 300 тенге
31.  
i

Квад­ра­тич­ная функ­ция за­да­на в виде y = левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка в квад­ра­те минус 4. Уста­но­ви­те со­от­вет­ствия:

A) Нули функ­ции

Б) Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1) {3; 4}

2) (5; −4)

3) {3; 7}

4) (−5; 4)

32.  
i

Рав­но­бед­рен­ная тра­пе­ция опи­са­на около окруж­но­сти, ра­ди­ус ко­то­рой равен 14. Бо­ко­вая сто­ро­ны тра­пе­ции равна 30. Уста­но­ви­те со­от­вет­ствия:

A) Сред­няя линия тра­пе­ции

Б) Вы­со­та тра­пе­ции

1) 28

2) 25

3) 24

4) 30

33.  
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 6x плюс 9 конец ар­гу­мен­та , если из­вест­но, что x боль­ше 3. Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x2, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x2

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) (−20; −15]

2) (−10; −3)

3) [1; 2)

4) (3; 8)

Даны урав­не­ния  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x в квад­ра­те плюс 2x плюс 1 пра­вая круг­лая скоб­ка = 0 и 2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 4x минус 8 пра­вая круг­лая скоб­ка = 16. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 1, 2, 4

2) 0, 7, 1

3) 0, 6, −2

4) 6, 5, −2

35.  
i

Вы­пи­са­но не­сколь­ко по­сле­до­ва­тель­ных чле­нов гео­мет­ри­че­ской про­грес­сии: …; 150; x; 6; 1,2; … Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) q

Б) x

1) 7,2

2) 30

3) 0,2

4) 1080

36.  
i

Kоли­че­ство де­ли­те­лей числа 24 равно

1) 22
2) 4
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 64 конец ар­гу­мен­та
4) 8
5) 12
6) 23
37.  
i

Их пе­ре­чис­лен­ных ниже от­ве­тов вы­бе­ри­те те, ко­то­рые равны зна­че­нию вы­ра­же­ния  ко­си­нус 120 гра­ду­сов плюс тан­генс дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 4 конец дроби .

1) 2
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
5) 2−1
6)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
38.  
i

В ариф­ме­ти­че­ской про­грес­сии, со­сто­я­щей из 20 чле­нов, сумма 10 чле­нов с чет­ны­ми но­ме­ра­ми на 100 боль­ше, чем сумма 10 дру­гих ее чле­нов. Най­ди­те раз­ность про­грес­сии.

1) 10
2) 5
3) 8
4) 12
5)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 10 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
6)  ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та
39.  
i

Пара чисел (x; y) яв­ля­ет­ся ре­ше­ни­ем си­сте­мы урав­не­ний

 си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка y минус x пра­вая круг­лая скоб­ка = 1, 4 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка умно­жить на 2 в сте­пе­ни y = 8. конец си­сте­мы .

Най­ди­те зна­че­ние вы­ра­же­ния 2x в квад­ра­те плюс y.

1) 5
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 36 конец ар­гу­мен­та
3) 9
4) 3
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та
6) 6
40.  
i

Сто­ро­ны ос­но­ва­ний пра­виль­ной усе­чен­ной тре­уголь­ной пи­ра­ми­ды 4 дм и 12 дм. Бо­ко­вая грань об­ра­зу­ет с боль­шим ос­но­ва­ни­ем угол 60°. Най­ди­те вы­со­ту.

1) 5 дм
2) 4 дм
3) 3 дм
4) 7 дм