Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 19331
1.  
i

Вы­пол­ни­те дей­ствия с ра­ди­ка­ла­ми 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3,5 конец ар­гу­мен­та минус 0,5 ко­рень из: на­ча­ло ар­гу­мен­та: 56 конец ар­гу­мен­та .

1) 1
2) 0
3) 3
4) 2
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка 8b минус 8 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 8b плюс 8 пра­вая круг­лая скоб­ка минус 8b левая круг­лая скоб­ка 8b плюс 8 пра­вая круг­лая скоб­ка при b=2,6.

1) −28,8
2) −186
3) −230,4
4) −8
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния: 2 ко­си­нус в квад­ра­те 15 гра­ду­сов минус 2 синус в квад­ра­те 15 гра­ду­сов .

1)  дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби
3)  ко­рень из 3
4) 1
4.  
i

Опре­де­ли­те сте­пень мно­го­чле­на: 3x в сте­пе­ни 5 y в кубе минус 6y в квад­ра­те плюс 12xy в кубе плюс 4.

1) 6
2) 3
3) 8
4) 4
5.  
i

Ре­ши­те урав­не­ние: 22 минус левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 7 минус 5x пра­вая круг­лая скоб­ка .

1) 2
2) 3
3) −2
4) 0
6.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 2x минус 3y= минус 1, дробь: чис­ли­тель: y, зна­ме­на­тель: x конец дроби =0,75. конец си­сте­мы .

1) (1; 5)
2) (0; −7)
3) (4; 3)
4) (3; 4)
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x в кубе конец дроби минус дробь: чис­ли­тель: 3, зна­ме­на­тель: x конец дроби минус дробь: чис­ли­тель: 2, зна­ме­на­тель: x в квад­ра­те конец дроби пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 4x минус 1, зна­ме­на­тель: 2x в квад­ра­те конец дроби плюс 3 на­ту­раль­ный ло­га­рифм x плюс C
2)  дробь: чис­ли­тель: 4x минус 1, зна­ме­на­тель: 2x в квад­ра­те конец дроби минус 3 на­ту­раль­ный ло­га­рифм x плюс C
3)  дробь: чис­ли­тель: 4x плюс 1, зна­ме­на­тель: 2x в квад­ра­те конец дроби минус 3 на­ту­раль­ный ло­га­рифм x плюс C
4)  дробь: чис­ли­тель: 4x минус 3, зна­ме­на­тель: 2x в квад­ра­те конец дроби минус 3 на­ту­раль­ный ло­га­рифм x плюс C
8.  
i

Бокал имеет форму ко­ну­са. В него на­ли­та вода на вы­со­ту, рав­ную 4. Если в бокал до­лить воды объ­е­мом, рав­ным одной чет­вер­той объ­е­ма на­ли­той воды, то вода ока­жет­ся на вы­со­те, рав­ной:

1)  ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 100 конец ар­гу­мен­та
2) 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та
3) 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4) 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та
9.  
i

Най­ди­те наи­мень­шее целое ре­ше­ние си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний 5 минус дробь: чис­ли­тель: 2, зна­ме­на­тель: x плюс 3 конец дроби боль­ше или равно 0, дробь: чис­ли­тель: 4x минус 7, зна­ме­на­тель: 2x плюс 3 конец дроби мень­ше 2 конец си­сте­мы .

1) −2
2) −1
3) 1
4) 2
10.  
i

Pешите урав­не­ние  ко­рень из 2 ко­си­нус в квад­ра­те x минус ко­си­нус x=0 и най­ди­те сумму его кор­ней на x при­над­ле­жит левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
2)  минус Пи
3) 0
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби
11.  
i

Най­ди­те про­из­вод­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = минус 3\ln левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка .

1) −3
2)  минус 3x
3)  минус 3 в сте­пе­ни левая круг­лая скоб­ка \ln левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка
4)  дробь: чис­ли­тель: минус 3, зна­ме­на­тель: x плюс 1 конец дроби
12.  
i

Pешите не­ра­вен­ство: 4 левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка плюс 5x боль­ше или равно 3x.

1)  левая квад­рат­ная скоб­ка минус 2; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка 2; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
13.  
i

Ка­те­ты пря­мо­уголь­но­го тре­уголь­ни­ка равны 10 и 24. Вы­со­та, про­ведённая к ги­по­те­ну­зе, равна

1)  целая часть: 9, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 13
2) 14
4)  целая часть: 6, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 13
6)  целая часть: 6, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 11
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от минус 4 до 1, левая круг­лая скоб­ка 7x в квад­ра­те минус 3x плюс 11 пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 1375, зна­ме­на­тель: 12 конец дроби
2)  дробь: чис­ли­тель: 1375, зна­ме­на­тель: 6 конец дроби
3)  дробь: чис­ли­тель: 1639, зна­ме­на­тель: 6 конец дроби
4) 228
15.  
i

Най­ди­те диа­го­наль пря­мо­уголь­ной приз­мы, в ос­но­ва­нии ко­то­рой лежит пря­мо­уголь­ник со сто­ро­на­ми 8 см и 4 ко­рень из 5 см и бо­ко­вое ребро приз­мы 5 см.

1) 15 см
2) 11 см
3) 14 см
4) 13 см
16.  
i

Ре­ши­те урав­не­ние  дробь: чис­ли­тель: 2, зна­ме­на­тель: x конец дроби = дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 минус 4x конец ар­гу­мен­та , зна­ме­на­тель: x в квад­ра­те конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 минус 4x конец ар­гу­мен­та конец дроби .

1) 0
2) 5
3) 1
4) 2
17.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка 2 x минус 1 пра­вая круг­лая скоб­ка умно­жить на 27 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка =3, левая круг­лая скоб­ка 5 x минус y пра­вая круг­лая скоб­ка в квад­ра­те =36. конец си­сте­мы .

1) любое число
2) пу­стое мно­же­ство
3) (1; −1); (−0,8; 2)
4) (1; −1); (1; 0)
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс 2x,y=x плюс 2.

1)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 31, зна­ме­на­тель: 6 конец дроби
19.  
i

На­клон­ная крыша уста­нов­ле­на на трёх вер­ти­каль­ных опо­рах, рас­по­ло­жен­ных на одной пря­мой. Сред­няя опора стоит по­се­ре­ди­не между малой и боль­шой опо­ра­ми (см. рис.). Вы­со­та малой опоры 1,8 м, вы­со­та боль­шой опоры 2,8 м. Най­ди­те вы­со­ту сред­ней опоры.

1) 1,8
2) 2,8
3) 2,3
4) 2,5
20.  
i

Ука­жи­те фор­му­лу n-го члена по­сле­до­ва­тель­но­сти: 3; 8; 13; 18; 23 …

1) 6n – 1
2) 5n + 3
3) 4n – 1
4) 5n – 2
21.  
i

Най­ди­те угол между век­то­ра­ми \overrightarrowAB и \overrightarrowCD, если A левая круг­лая скоб­ка 3;7;4 пра­вая круг­лая скоб­ка ; B левая круг­лая скоб­ка 5; минус 2;34 пра­вая круг­лая скоб­ка ; C левая круг­лая скоб­ка 4; минус 7; минус 10 пра­вая круг­лая скоб­ка ; D левая круг­лая скоб­ка 3;2;1 пра­вая круг­лая скоб­ка .

1)  арк­ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 247 ко­рень из: на­ча­ло ар­гу­мен­та: 199955 конец ар­гу­мен­та , зна­ме­на­тель: 199955 конец дроби пра­вая круг­лая скоб­ка
2)  арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 247 ко­рень из: на­ча­ло ар­гу­мен­та: 199955 конец ар­гу­мен­та , зна­ме­на­тель: 199955 конец дроби пра­вая круг­лая скоб­ка
3)  арк­ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 330 ко­рень из: на­ча­ло ар­гу­мен­та: 199955 конец ар­гу­мен­та , зна­ме­на­тель: 199955 конец дроби пра­вая круг­лая скоб­ка
4)  арк­ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 247 ко­рень из: на­ча­ло ар­гу­мен­та: 199955 конец ар­гу­мен­та , зна­ме­на­тель: 985 конец дроби пра­вая круг­лая скоб­ка
22.  
i

Ука­жи­те урав­не­ние, рав­но­силь­ное урав­не­нию: 2x плюс 3y= минус 7x плюс 8y плюс 4.

1) 27 x=12 плюс 15 y
2)  минус 5 x=4 плюс 5 y
3) 18 x=4 минус 5 y
4) 27 x=15 y плюс 6
23.  
i

Ре­ши­те урав­не­ние: 4 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка 2x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2x минус 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка = 2 ко­рень 3 сте­пе­ни из 2 .

1) 4
2) 3
3) 8
4) 9
24.  
i

Ре­ши­те не­ра­вен­ство  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та мень­ше или равно 3.

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 82 пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка 1; 65 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка 1; 82 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 65 пра­вая квад­рат­ная скоб­ка
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 3, зна­ме­на­тель: 1 минус 4x конец дроби ,x_0=1.

1) y = дробь: чис­ли­тель: 5x, зна­ме­на­тель: 3 конец дроби минус дробь: чис­ли­тель: 7, зна­ме­на­тель: 3 конец дроби
2) y = дробь: чис­ли­тель: 4x, зна­ме­на­тель: 3 конец дроби минус дробь: чис­ли­тель: 7, зна­ме­на­тель: 3 конец дроби
3) y = дробь: чис­ли­тель: 4x, зна­ме­на­тель: 3 конец дроби плюс 2
4) y = минус дробь: чис­ли­тель: 4x, зна­ме­на­тель: 3 конец дроби минус дробь: чис­ли­тель: 7, зна­ме­на­тель: 3 конец дроби
26.  
i

Пер­вый этаж дома со­сто­ит из ком­на­ты и ко­ри­до­ра пря­мо­уголь­ной формы, а также из кухни и ван­ной ком­на­ты квад­рат­ной формы. Вы­со­та по­тол­ков со­став­ля­ет 2,5 м.

Опре­де­ли­те пло­щадь ко­ри­до­ра.

1) 28 м2
2) 18 м2
3) 36 м2
4) 38 м2
27.  
i

Дет­ское ве­дер­ко имеет форму усе­чен­но­го ко­ну­са с диа­мет­ра­ми ос­но­ва­нии 10 см и 34 см (ниж­нее ос­но­ва­ние мень­ше верх­не­го), об­ра­зу­ю­щей 13 см.

Во сколь­ко раз ра­ди­ус верх­не­го ос­но­ва­ния боль­ше, чем ра­ди­ус ниж­не­го ос­но­ва­ния

1) в 3,2 раза
2) в 2,9 раза
3) в 3,8 раза
4) в 3,4 раза
28.  
i

Пер­вый этаж дома со­сто­ит из ком­на­ты и ко­ри­до­ра пря­мо­уголь­ной формы, а также из кухни и ван­ной ком­на­ты квад­рат­ной формы. Вы­со­та по­тол­ков со­став­ля­ет 2,5 м.

К се­мей­но­му празд­ни­ку ре­ши­ли ку­пить гир­лян­ды и укра­сить ком­на­ту. Для этого не­об­хо­ди­мо вы­пол­нить сле­ду­ю­щие из­ме­ре­ния: каж­дый ниж­ний угол ком­на­ты ровно со­еди­нить с ос­но­ва­ни­ем люст­ры, на­хо­дя­щей­ся в цен­тре по­тол­ка ком­на­ты. Сколь­ко мет­ров гир­лян­ды для этого по­на­до­бит­ся (ответ округ­лить до целых).

1) 31 м
2) 29 м
3) 20 м
4) 40 м
29.  
i

Пер­вый этаж дома со­сто­ит из ком­на­ты и ко­ри­до­ра пря­мо­уголь­ной формы, а также из кухни и ван­ной ком­на­ты квад­рат­ной формы. Вы­со­та по­тол­ков со­став­ля­ет 2,5 м.

Для по­куп­ки гир­лянд в ма­га­зи­не тре­бу­ет­ся вы­брать самый оп­ти­маль­ный ва­ри­ант.

1) Упа­ков­ка гир­лян­ды дли­ной 12 м за 1300 тенге за штуку
2) Упа­ков­ка гир­лян­ды дли­ной 10 м за 1200 тенге за штуку
3) Упа­ков­ка гир­лян­ды дли­ной 5 м за 500 тенге за штуку
4) Упа­ков­ка гир­лян­ды дли­ной 13 м за 1400 тенге за штуку
30.  
i

Дет­ское ве­дер­ко имеет форму усе­чен­но­го ко­ну­са с диа­мет­ра­ми ос­но­ва­нии 10 см и 34 см (ниж­нее ос­но­ва­ние мень­ше верх­не­го), об­ра­зу­ю­щей 13 см.

Опре­де­ли­те, сколь­ко нужно крас­ки для по­кры­тия внеш­ней по­верх­но­сти ве­дер­ки (вклю­чая дно), если на 1 дм2 рас­хо­ду­ет­ся 150 г крас­ки  левая круг­лая скоб­ка Пи \approx 3 пра­вая круг­лая скоб­ка .

1) 1399,5 г
2) 1562,4 г
3) 1765,5 г
4) 1865,4 г
31.  
i

Квад­ра­тич­ная функ­ция за­да­на в виде y = левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка в квад­ра­те минус 4. Уста­но­ви­те со­от­вет­ствия:

A) Нули функ­ции

Б) Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1) {3; 4}

2) (5; −4)

3) {3; 7}

4) (−5; 4)

32.  
i

Рав­но­бед­рен­ная тра­пе­ция опи­са­на около окруж­но­сти, ра­ди­ус ко­то­рой равен 14. Бо­ко­вая сто­ро­ны тра­пе­ции равна 30. Уста­но­ви­те со­от­вет­ствия:

A) Сред­няя линия тра­пе­ции

Б) Вы­со­та тра­пе­ции

1) 28

2) 25

3) 24

4) 30

33.  
i

Най­ди­те два на­ту­раль­ных числа a и b, от­но­ше­ние ко­то­рых равно 3, а от­но­ше­ние суммы их квад­ра­тов к их сумме равно 10. Уста­но­ви­те со­от­вет­ствия:

A) Число a при­над­ле­жит про­ме­жут­ку

Б) Число b при­над­ле­жит про­ме­жут­ку

1) [1; 3)

2) [3; 4]

3) (10; 12]

4) (6; 8)

34.  
i

Даны урав­не­ния x в квад­ра­те плюс 3x минус 4 = 0 и 3x левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка = 0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 0, 1, 3

2) −4, 0, 1

3) −1, 0, 6

4) −2, 2, 3

35.  
i

Дана гео­мет­ри­че­ская про­грес­сия (bn), где b2  =  8 и b5  =  512. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем

A) S5

Б) 10 умно­жить на b_3

1) 682

2) 80

3) 674

4) 320

36.  
i

Kоли­че­ство де­ли­те­лей числа 24 равно

1) 22
2) 4
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 64 конец ар­гу­мен­та
4) 8
5) 12
6) 23
37.  
i

Их пе­ре­чис­лен­ных ниже от­ве­тов вы­бе­ри­те те, ко­то­рые равны зна­че­нию вы­ра­же­ния  ко­си­нус 120 гра­ду­сов плюс тан­генс дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 4 конец дроби .

1) 2
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
5) 2−1
6)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
38.  
i

В ариф­ме­ти­че­ской про­грес­сии, со­сто­я­щей из 20 чле­нов, сумма 10 чле­нов с чет­ны­ми но­ме­ра­ми на 100 боль­ше, чем сумма 10 дру­гих ее чле­нов. Най­ди­те раз­ность про­грес­сии.

1) 10
2) 5
3) 8
4) 12
5)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 10 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
6)  ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та
39.  
i

Ре­ши­те си­сте­му по­ка­за­тель­ных урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка 8 в сте­пе­ни левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка =32 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 4y минус 1 пра­вая круг­лая скоб­ка , новая стро­ка 5 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та в сте­пе­ни левая круг­лая скоб­ка 2y плюс 1 пра­вая круг­лая скоб­ка . конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния 4x плюс 2y.

1)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 14 конец дроби
2) 1
3)  ко­рень из 1
4)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 14 конец дроби
5)  дробь: чис­ли­тель: 13, зна­ме­на­тель: 14 конец дроби
6) 2 в сте­пе­ни 0
40.  
i

Дан еди­нич­ный куб ABCDA1B1C1D1 . Най­ди­те угол между пря­мой AB1 и пря­мой BC1.

1)  дробь: чис­ли­тель: 180 гра­ду­сов , зна­ме­на­тель: 3 конец дроби
2) 60°
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
5) 90°
6) 30°