Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 35811
1.  
i

Упро­сти­те чис­ло­вые вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 27 плюс 10 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 27 минус 10 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец ар­гу­мен­та .

1) 0
2) 5
3) 10
4) 8
2.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 2c минус 4, зна­ме­на­тель: cd минус 2d конец дроби   и най­ди­те его зна­че­ние при c=0,5; d=5.

1) 1
2) 0,4
3) 0,2
4) 0,5
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби \ctg дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби .

1) −3
2) 3
3) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4) −1
4.  
i

Дан­ное вы­ра­же­ние  минус левая круг­лая скоб­ка 3,5x минус y пра­вая круг­лая скоб­ка плюс 3 левая круг­лая скоб­ка минус 2y плюс 0,5x пра­вая круг­лая скоб­ка имеет стан­дарт­ный вид

1) 2x минус 5y
2)  минус 2x минус 5y
3) 2x плюс 5y
4)  минус 2x минус 7y
5.  
i

Ре­ши­те урав­не­ние:  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби y минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби = дробь: чис­ли­тель: 5, зна­ме­на­тель: 9 конец дроби y.

1) 6
2) 3
3) 9
4) 2
6.  
i

Если пары (x1; y1) и (x2; y2) — ре­ше­ния си­сте­мы урав­не­ний

 си­сте­ма вы­ра­же­ний 2 x в квад­ра­те минус y=0, y плюс 3=5 x, конец си­сте­мы .

то най­ди­те m, где m= левая круг­лая скоб­ка y_1 минус x_1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка y_2 минус x_2 пра­вая круг­лая скоб­ка .

1) 4
2) 15
3) 17
4) 3
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 ко­си­нус в квад­ра­те x конец дроби плюс дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 синус в квад­ра­те x конец дроби пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби \operatorname тан­генс x минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби \operatorname\ctgx плюс C
2)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби \operatorname тан­генс x плюс дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби \operatorname\ctgx плюс C
3)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби \operatorname\ctgx минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби \operatorname тан­генс x плюс C
4)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби \operatorname синус x минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби \operatorname ко­си­нус x плюс C
8.  
i

Усе­чен­ный конус, у ко­то­ро­го ра­ди­у­сы ос­но­ва­ний равны 7 и 8, и пол­ный конус такой же вы­со­ты рав­но­ве­ли­ки. Най­ди­те ра­ди­ус ос­но­ва­ния пол­но­го ко­ну­са.

1) 13
2) 10
3) 12
4) 15
9.  
i

Ре­ши­те не­ра­вен­ство  дробь: чис­ли­тель: x в квад­ра­те плюс 16, зна­ме­на­тель: x в квад­ра­те минус 16 конец дроби мень­ше или равно дробь: чис­ли­тель: 25 плюс 8 x, зна­ме­на­тель: x в квад­ра­те минус 16 конец дроби .

1)  левая квад­рат­ная скоб­ка 1; 4 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 4; 16 пра­вая квад­рат­ная скоб­ка
2) [1; −2)
3) (3; 4)
4)  левая круг­лая скоб­ка минус 4; минус 1 пра­вая квад­рат­ная скоб­ка \cup левая круг­лая скоб­ка 4; 9 пра­вая квад­рат­ная скоб­ка
10.  
i

Ре­ши­те урав­не­ние  синус в квад­ра­те x минус 17 синус x плюс 16 = 0 и най­ди­те его корни на x при­над­ле­жит левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
2)  минус Пи
3)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3 левая круг­лая скоб­ка 1 минус 3x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 4x плюс 5 пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка 3;6 пра­вая круг­лая скоб­ка .

1) 12x в кубе минус дробь: чис­ли­тель: 33x в квад­ра­те , зна­ме­на­тель: 2 конец дроби плюс 15x плюс 433,5
2)  минус 12x в кубе минус дробь: чис­ли­тель: 33x в квад­ра­те , зна­ме­на­тель: 2 конец дроби плюс 15x плюс 433,5
3)  минус 12x в кубе минус дробь: чис­ли­тель: 33x в квад­ра­те , зна­ме­на­тель: 2 конец дроби плюс 433,5
4) 12x в кубе минус дробь: чис­ли­тель: 33x в квад­ра­те , зна­ме­на­тель: 2 конец дроби
12.  
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 8, зна­ме­на­тель: 4x минус 2 конец дроби мень­ше 0.

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 1 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка
13.  
i

Ис­поль­зуя чер­теж, вы­чис­ли­те пло­щадь тре­уголь­ни­ка ABC.

1)  дробь: чис­ли­тель: 9 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
2) 9 ко­рень из 3
3)  дробь: чис­ли­тель: 3 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
4) 9
14.  
i

Вы­чис­ли­те  при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка ко­си­нус левая круг­лая скоб­ка 2 x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка d x.

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
4)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
15.  
i

Най­ди­те вы­со­ту пи­ра­ми­ды, каж­дое бо­ко­вое ребро ко­то­рой равно 10 см и в ос­но­ва­нии квад­рат со сто­ро­ной 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см.

1) 8 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см.
2) 8 см
3) 6 см
4) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см.
16.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 3x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус x конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: 12 минус x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус x конец ар­гу­мен­та .

1) −6
2) −4
3) −1
4) 2
17.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 2 синус 4x минус 1 боль­ше или равно 0,2 ко­си­нус 4x мень­ше или равно ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та . конец си­сте­мы .

1)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 16 конец дроби плюс дробь: чис­ли­тель: Пи n, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: Пи n, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка : n при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка
2)  левая фи­гур­ная скоб­ка левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс дробь: чис­ли­тель: Пи n, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 24 конец дроби плюс дробь: чис­ли­тель: Пи n, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка : n при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка
3)  левая фи­гур­ная скоб­ка левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 16 конец дроби плюс дробь: чис­ли­тель: Пи n, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 24 конец дроби плюс дробь: чис­ли­тель: Пи n, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка : n при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка
4)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс дробь: чис­ли­тель: Пи n, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс дробь: чис­ли­тель: Пи n, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка : n при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной па­ра­бо­ла­ми: y=x в квад­ра­те плюс 1,y=x в квад­ра­те минус 1, минус 10 мень­ше или равно x мень­ше или равно 10.

1) 10
2) 40
3) 20
4) 80
19.  
i

Кар­тин­ка имеет форму пря­мо­уголь­ни­ка со сто­ро­на­ми 24 см и 38 см. Её на­кле­и­ли на бу­ма­гу так, что во­круг кар­тин­ки по­лу­чи­лась окан­тов­ка оди­на­ко­вой ши­ри­ны. Пло­щадь, ко­то­рую за­ни­ма­ет кар­тин­ка с окан­тов­кой, равна 1976 см2. Ка­ко­ва ши­ри­на окан­тов­ки?

1) 6
2) 9
3) 4
4) 7
20.  
i

Пер­вый член ариф­ме­ти­че­ской про­грес­сии равен 5, раз­ность про­грес­сии d = −7. Най­ди­те ко­ли­че­ство чле­нов дан­ной ариф­ме­ти­че­ской про­грес­сии, если a_n= минус 163.

1) 36
2) 41
3) 25
4) 30
21.  
i

Сто­ро­ны пра­виль­но­го тре­уголь­ни­ка ABC равны 6. Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров \overrightarrowAB и \overrightarrowAC.

1) 18 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2) 18
3) 9
4) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
22.  
i

 ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка ac пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та равен?

1)  минус ac
2) a в квад­ра­те c в квад­ра­те
3)  минус |ac|
4) |ac|
23.  
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка x в квад­ра­те плюс 4\log _4 левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка плюс 1=0.

1) 1
2)  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
24.  
i

Ре­ши­те не­ра­вен­ство \log _ дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби левая круг­лая скоб­ка x в квад­ра­те минус 8x пра­вая круг­лая скоб­ка мень­ше или равно минус 2.

1)  левая круг­лая скоб­ка 8; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 9; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 0 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 8; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 0 пра­вая круг­лая скоб­ка
25.  
i

На­пи­ши­те урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в квад­ра­те минус x минус 12 в точке x0  =  5.

1) y = 6x минус 37
2) y = 9x минус 37
3) y = 9x минус 34
4) y = 9x минус 38
26.  
i

Для из­го­тов­ле­ния сталь­ных ди­зай­нер­ских шаров, завод по­лу­чил за­го­тов­ки в виде куба. Про­грамм­ная уста­нов­ка для об­та­чи­ва­ния де­та­лей тре­бу­ет ввода ко­ор­ди­нат за­го­тов­ки в трёхмер­ном про­стран­стве. Про­грам­мист вво­дит си­сте­му ко­ор­ди­нат в вер­ши­ну куба как по­ка­за­но на ри­сун­ке.

Опре­де­ли­те ко­ор­ди­на­ты точки B.

1) (4; 4; 0)
2) (4; 0; 4)
3) (4; 4; 4)
4) (0; 4; 0)
27.  
i

Учи­тель дал до­маш­нее прак­ти­че­ское за­да­ние по гео­мет­рии. Сде­лать макет приз­мы и со­ста­вить к ним за­да­ния. Самат под­го­то­вил макет пра­виль­ной ше­сти­уголь­ной приз­мы со сто­ро­ной ос­но­ва­ния рав­ной 1, а бо­ко­вое ребро 2 и со­ста­вил сле­ду­ю­щие за­да­ния.

Опре­де­ли­те длину по­лу­чен­но­го век­то­ра.

1)  ко­рень из 5
2)  ко­рень из 2
3)  ко­рень из 3
4)  ко­рень из 6
28.  
i

Учи­тель дал до­маш­нее прак­ти­че­ское за­да­ние по гео­мет­рии. Сде­лать макет приз­мы и со­ста­вить к ним за­да­ния. Самат под­го­то­вил макет пра­виль­ной ше­сти­уголь­ной приз­мы со сто­ро­ной ос­но­ва­ния рав­ной 1, а бо­ко­вое ребро 2 и со­ста­вил сле­ду­ю­щие за­да­ния.

Опре­де­ли­те век­тор, рав­ный сумме век­то­ров  \overrightarrowAB_1 плюс \overrightarrowB_1E_1 плюс \overrightarrowF_1F.

1)  \overrightarrowAB_1
2)  \overrightarrowAF_1
3)  \overrightarrowBB_1
4)  \overrightarrowAE
29.  
i

Для из­го­тов­ле­ния сталь­ных ди­зай­нер­ских шаров, завод по­лу­чил за­го­тов­ки в виде куба. Про­грамм­ная уста­нов­ка для об­та­чи­ва­ния де­та­лей тре­бу­ет ввода ко­ор­ди­нат за­го­тов­ки в трёхмер­ном про­стран­стве. Про­грам­мист вво­дит си­сте­му ко­ор­ди­нат в вер­ши­ну куба как по­ка­за­но на ри­сун­ке.

Опре­де­ли­те ко­ор­ди­на­ты цен­тра шара впи­сан­но­го в дан­ный куб.

1) (2; 2; 2)
2) (2; 0; 2)
3) (2; 0; 0)
4) (0; 2; 0)
30.  
i

Конус

Cлово «конус» гре­че­ско­го про­ис­хож­де­ния и озна­ча­ет  — «сос­но­вая шишка».

H  =  12 см, R  =  5 см

Aртем на свой день рож­де­ния решил при­гла­сить школь­ных дру­зей: Ару­жан, Айшу, Да­ни­ла и Ми­ра­са. При­го­то­вил для себя и своих го­стей ко­ну­со­об­раз­ный празд­нич­ный го­лов­ной убор  — кол­пак (для при­го­тов­ле­ния од­но­го кол­па­ка по­на­до­бит­ся: 1 лист бу­ма­ги фор­ма­та А4 (29,7 × 21 см), ре­зин­ку дли­ной 8 см и ленты раз­ных цве­тов).

Eсли ста­кан и празд­нич­ный кол­пак имеют оди­на­ко­вые объ­е­мы, то сколь­ко бы по­ме­сти­лось сока в ста­кан (π  ≈  3)?

1) 300 см3
2) 280 см3
3) 200 см3
4) 250 см3
31.  
i

За­да­на функ­ция y=2 ко­си­нус x минус 1. Уста­но­ви­те со­от­вет­ствие между наи­боль­шим и наи­мень­шим зна­че­ни­ем функ­ции и его чис­ло­вым зна­че­ни­ем.

A) Наи­боль­шее зна­че­ние функ­ции

Б) Наи­мень­шее зна­че­ние функ­ции

1) 2

2) 1

3) −3

4) −1

32.  
i

Три окруж­но­сти ра­ди­у­са­ми 2 каж­дая по­пар­но ка­са­ют­ся внеш­ним об­ра­зом. Уста­но­ви­те со­от­вет­ствие между дли­ной сто­ро­ны тре­уголь­ни­ка, об­ра­зо­ван­но­го цен­тра­ми окруж­но­стей, его пло­ща­дью и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина сто­ро­ны тре­уголь­ни­ка

Б) Пло­щадь тре­уголь­ни­ка

1) 4 ко­рень из 3

2) 2

3) 16

4) 4

33.  
i

Hай­ди­те два на­ту­раль­ных числа n и m,  n боль­ше m, от­но­ше­ние ко­то­рых равно 3, а от­но­ше­ние суммы их квад­ра­тов к их сумме равно 5. Уста­но­ви­те со­от­вет­ствие между при­ве­ден­ны­ми ниже дан­ны­ми.

A)  число n при­над­ле­жит про­ме­жут­ку

Б)  число m при­над­ле­жит про­ме­жут­ку

1)  [0; 2]

2)  (2; 4)

3)  (4; 6)

4)  (4; 8)

34.  
i

Даны урав­не­ния x в квад­ра­те плюс 8x минус 9 = 0 и 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка = 32. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) −9, 3, 1

2) −1, 0, 2

3) −9, 4, 1

4) 7, 8, 9

35.  
i

В ариф­ме­ти­че­ской про­грес­сии (an) тре­тий член равен 20, раз­ность про­грес­сии d  =  –3,2. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) a1

Б) S6

1) 100,8

2) 110,4

3) 26,4

4) 16,8

36.  
i

Зна­че­ние вы­ра­же­ния 8 ко­рень из 3 плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: 192 конец ар­гу­мен­та равно:

1) 16 ко­рень из 3
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 195 конец ар­гу­мен­та
3) 9 ко­рень из 3
4)  дробь: чис­ли­тель: 65 ко­рень из: на­ча­ло ар­гу­мен­та: 195 конец ар­гу­мен­та , зна­ме­на­тель: 8 конец дроби
5)  дробь: чис­ли­тель: 6 ко­рень из 3 , зна­ме­на­тель: 8 конец дроби
6)  ко­рень из: на­ча­ло ар­гу­мен­та: 243 конец ар­гу­мен­та
37.  
i

Зна­че­ние вы­ра­же­ния  синус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс альфа пра­вая круг­лая скоб­ка минус ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби минус альфа пра­вая круг­лая скоб­ка равно

1)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2) 0
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
5) –1
6) 1
38.  
i

Если в ариф­ме­ти­че­ской про­грес­сии a_3=4 и a_5=12, то вы­чис­ли­те сумму пер­во­го члена и раз­но­сти этой про­грес­сии

1) 0
2) 3
3) 4
4) 6
5) 12
6) 14
39.  
i

Най­ди­те от­но­ше­ние  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни x умно­жить на 3 в сте­пе­ни y = 27,10 в сте­пе­ни левая круг­лая скоб­ка \lg левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка =5. конец си­сте­мы .

1)  минус левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
2) 4
3) 8
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
5) 1
6) −4
40.  
i

В ци­лин­дре, пло­щадь ос­но­ва­ния ко­то­ро­го равна 48 (при­нять  Пи \approx3), про­ве­де­но осе­вое се­че­ние. AC  — диа­го­наль осе­во­го се­че­ния ци­лин­дра. Из ниже пе­ре­чис­лен­ных от­ве­тов най­ди­те те, ко­то­рые яв­ля­ют­ся де­ли­те­ля­ми зна­че­ния пло­ща­ди бо­ко­вой по­верх­но­сти ци­лин­дра.

1) 6
2) 8
3) 9
4) 34
5) 65
6) 96