Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 28932
1.  
i

Вы­чис­ли­те:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка 9 плюс ло­га­рифм по ос­но­ва­нию 2 16.

1) 4
2) 6
3) 1
4) 2
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка 2x плюс 3y пра­вая круг­лая скоб­ка в квад­ра­те минус 3x левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби x плюс 4y пра­вая круг­лая скоб­ка при x= минус 1,038, y= ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

1) 27
2) 18
3) 9
4) 36
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 27 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка синус левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка .

1) −13,5
2) −40,5
3) 27 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4) 81
4.  
i

За­ме­ни­те знак * од­но­чле­ном, так чтобы по­лу­чен­ный трёхчлен 6,25 q в квад­ра­те минус 15 q g плюс * можно было пред­ста­вить в виде квад­ра­та дву­чле­на

1) 9g2
2) 5g2
3) 9g
4) 3g2
5.  
i

Ре­ши­те урав­не­ние: 2 левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка =1 минус 3 x .

1) 6
2) 5
3) 0
4) −1
6.  
i

Ре­ши­те си­сте­му урав­не­ний  си­сте­ма вы­ра­же­ний 3x минус 2y = 4,5x плюс 2y = 20 конец си­сте­мы .

1)  левая круг­лая скоб­ка минус 3; минус 2,5 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 2,5; 3 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 3; 2,5 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 3; минус 2,5 пра­вая круг­лая скоб­ка
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в квад­ра­те конец дроби плюс дробь: чис­ли­тель: минус x в кубе плюс 5x в квад­ра­те минус 6x плюс 3, зна­ме­на­тель: x в кубе конец дроби пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 10x минус 3, зна­ме­на­тель: 2x в квад­ра­те конец дроби плюс 3 на­ту­раль­ный ло­га­рифм x плюс C
2)  дробь: чис­ли­тель: 10x минус 3, зна­ме­на­тель: 2x в квад­ра­те конец дроби плюс 4 на­ту­раль­ный ло­га­рифм x плюс C
3)  дробь: чис­ли­тель: 10x плюс 5, зна­ме­на­тель: 2x в квад­ра­те конец дроби плюс 3 на­ту­раль­ный ло­га­рифм x плюс C
4)  дробь: чис­ли­тель: 8x минус 3, зна­ме­на­тель: 2x в квад­ра­те конец дроби минус 3 на­ту­раль­ный ло­га­рифм x плюс C
8.  
i

Ра­ди­ус ко­ну­са умень­ши­ли в два раза. Во сколь­ко раз умень­шил­ся объем ко­ну­са?

1) в 6 раз
2) в 2 раза
3) в 4 раза
4) в 8 раз
9.  
i

Ре­ши­те си­сте­му не­ра­венств  си­сте­ма вы­ра­же­ний x в квад­ра­те боль­ше или равно 2,25, левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 1. конец си­сте­мы .

1) (−3; −1]
2) [−3; −1,5)
3) [−1; 1,5]
4) [−3; −1,5]
10.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 5x= дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 30 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 20 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 15 конец дроби
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3x левая круг­лая скоб­ка 2 минус x в квад­ра­те пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 4;2 пра­вая круг­лая скоб­ка .

1) 3x в квад­ра­те плюс дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 78
2) 3x в кубе минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби x в кубе плюс 146
3) 3x в квад­ра­те минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 146
4) 3x в квад­ра­те минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка
12.  
i

Ре­ши­те не­ра­вен­ство: x в кубе минус 5x в квад­ра­те плюс 4x боль­ше или равно 0.

1)  левая квад­рат­ная скоб­ка 0 ; 1 пра­вая квад­рат­ная скоб­ка \cup левая круг­лая скоб­ка 4 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 0 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 1 ; 4 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка 0 ; 1 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 4 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 0 ; 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 4 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
13.  
i

Окруж­ность, впи­сан­ная в рав­но­бед­рен­ный тре­уголь­ник, делит в точке ка­са­ния одну из бо­ко­вых сто­рон на два от­рез­ка (как по­ка­за­но на ри­сун­ке), длины ко­то­рых равны 15 и 2, счи­тая от вер­ши­ны. Най­ди­те длину ос­но­ва­ния тре­уголь­ни­ка.

1) 7
2) 4
3) 6
4) 2
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 12 до 15, левая круг­лая скоб­ка 4 ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс x пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 81 минус 128 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та плюс 76 ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 81 минус 128 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та плюс 80 ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: 81 минус 128 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та плюс 80 ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 65 минус 128 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та плюс 80 ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
15.  
i

Из точки M про­ве­ден пер­пен­ди­ку­ляр MK, рав­ный 6 см к плос­ко­сти квад­ра­та ACPK. На­клон­ная MC об­ра­зу­ет с плос­ко­стью квад­ра­та угол 60°. Най­ди­те сто­ро­ну квад­ра­та.

1) 3 см
2)  ко­рень из 6 см
3) 2 ко­рень из 6 см
4) 6 см
16.  
i

Ре­ши­те урав­не­ние 4 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка =12.

1) 0
2) 1
3) −3; 1
4) −3
17.  
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 5 в сте­пе­ни x плюс левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x боль­ше 2,2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка мень­ше или равно 64 умно­жить на 2 в сте­пе­ни x . конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка минус 2; 0 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0; 3 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка минус 1; 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1; плюс бес­ко­неч­ность пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 3 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка минус 1; 1 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной гра­фи­ком функ­ции y = x в квад­ра­те минус 6x плюс 9 и гра­фи­ком ее про­из­вод­ной.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби
4) 1
19.  
i

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции ABCD равны 24 и 16, а ост­рый угол равен 45°. Най­ди­те пло­щадь тра­пе­ции.

1) 72
2) 120
3) 80
4) 94
20.  
i

Ука­жи­те фор­му­лу n-го члена ариф­ме­ти­че­ской про­грес­сии, если a_1= минус 3 и  d= минус 5.

1) a_n= минус 5 минус 2 n
2) a_n=2 n плюс 5
3) a_n=2 минус 5 n
4) a_n=5 минус 2 n
21.  
i

Даны век­то­ры \veca левая круг­лая скоб­ка 5; 3; 1 пра­вая круг­лая скоб­ка ,  \vecb левая круг­лая скоб­ка 4; минус 1; 0 пра­вая круг­лая скоб­ка . Най­ди­те ко­ор­ди­на­ты век­то­ра \vecm, если \vecm=\veca минус 2 \vecb.

1) \vecm левая круг­лая скоб­ка минус 3; 5; 1 пра­вая круг­лая скоб­ка
2)  \vecm левая круг­лая скоб­ка минус 3; минус 3; 1 пра­вая круг­лая скоб­ка
3) \vecm левая круг­лая скоб­ка 4; 2; минус 1 пра­вая круг­лая скоб­ка
4) \vecm левая круг­лая скоб­ка 5; минус 2; 1 пра­вая круг­лая скоб­ка
22.  
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: a в сте­пе­ни 8 умно­жить на a в сте­пе­ни левая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка , зна­ме­на­тель: a в кубе конец дроби .

1) a2
2) a3
3) a−1
4) a−3
23.  
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка тан­генс x плюс 4 пра­вая круг­лая скоб­ка = 2.

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k, k при­над­ле­жит Z
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k, k при­над­ле­жит Z
3)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k, k при­над­ле­жит Z
4)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k, k при­над­ле­жит Z
24.  
i

Ре­ши­те не­ра­вен­ство 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка минус 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка боль­ше или равно 96.

1)  левая квад­рат­ная скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 6 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка 4; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 6; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
25.  
i

На­пи­ши­те урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в квад­ра­те минус x минус 6 в точке x0  =  4.

1) y = 7x
2) y = 7x минус 22
3) y = 7x плюс 22
4) y = 4x плюс 22
26.  
i

Hа столе лежат кар­точ­ки, на ко­то­рых за­пи­са­ны числа 1; 2; 3; 4; 5. Марат на­у­гад взял три из них.

Kакова ве­ро­ят­ность того, что про­из­ве­де­ние чисел, за­пи­сан­ных на кар­точ­ках, ко­то­рые вы­тя­нул Марат, будет за­кан­чи­вать­ся циф­рой 0?

1) 0,7
2) 0,6
3) 0,1
4) 0,5
27.  
i

Mишень в тире раз­де­ле­на на три сек­то­ра раз­но­го цвета: го­лу­бой, крас­ный и жел­тый. Два стрел­ка, стре­ляя по ми­ше­ни, все­гда по­ра­жа­ют один из сек­то­ров. Ве­ро­ят­ность по­па­да­ния пер­во­го стрел­ка в крас­ную часть ми­ше­ни равна 0,45, а в го­лу­бую — 0,35. Ве­ро­ят­ность по­па­да­ния в жел­тую часть ми­ше­ни вто­ро­го стрел­ка равна 0,7.

Hай­ди­те ве­ро­ят­ность того, что пер­вый стре­лок попал в жел­тую часть ми­ше­ни.

1) 0,7
2) 0,45
3) 0,8
4) 0,2
28.  
i

Цир­ко­вой шатер имеет форму ци­лин­дра с по­став­лен­ным на него усе­чен­ным ко­ну­сом. Диа­метр ос­но­ва­ния ци­лин­дра равен 5 м, диа­метр верх­не­го ос­но­ва­ния усе­чен­но­го ко­ну­са равен 1 м. Вы­со­ты ци­лин­дра и усе­чен­но­го ко­ну­са равны 2 м.

Опре­де­ли­те пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дри­че­ской части шатра  левая круг­лая скоб­ка Пи \approx3 пра­вая круг­лая скоб­ка .

1) 30 м2
2) 20 м2
3) 15 м2
4) 10 м2
29.  
i

Цир­ко­вой шатер имеет форму ци­лин­дра с по­став­лен­ным на него усе­чен­ным ко­ну­сом. Диа­метр ос­но­ва­ния ци­лин­дра равен 5 м, диа­метр верх­не­го ос­но­ва­ния усе­чен­но­го ко­ну­са равен 1 м. Вы­со­ты ци­лин­дра и усе­чен­но­го ко­ну­са равны 2 м.

Опре­де­ли­те длину об­ра­зу­ю­щей верх­ней части шатра?

1) 2 ко­рень из 2 м
2) 3 ко­рень из 2 м
3)  ко­рень из 3 м
4) 2 ко­рень из 3 м
30.  
i

Mишень в тире раз­де­ле­на на три сек­то­ра раз­но­го цвета: го­лу­бой, крас­ный и жел­тый. Два стрел­ка, стре­ляя по ми­ше­ни, все­гда по­ра­жа­ют один из сек­то­ров. Ве­ро­ят­ность по­па­да­ния пер­во­го стрел­ка в крас­ную часть ми­ше­ни равна 0,45, а в го­лу­бую — 0,35. Ве­ро­ят­ность по­па­да­ния в жел­тую часть ми­ше­ни вто­ро­го стрел­ка равна 0,7.

Пер­вый стре­лок про­из­вел 5 вы­стре­лов по ми­ше­ни. С какой ве­ро­ят­но­стью он ровно 3 раза по­ра­зил жел­тую часть ми­ше­ни?

1) 0,0512
2) 0,512
3) 0,2048
4) 0,248
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 4x минус 5 конец ар­гу­мен­та . Уста­но­ви­те со­от­вет­ствия:

A) Об­ласть опре­де­ле­ния функ­ции

Б) Нули функ­ции

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

2) {−5; 1}

3) {−1; 5}

4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

32.  
i

Ра­ди­ус впи­сан­ной в пра­виль­ный тре­уголь­ник окруж­но­сти равен 10. Уста­но­ви­те со­от­вет­ствие между дли­ной сто­ро­ны тре­уголь­ни­ка, пло­ща­дью тре­уголь­ни­ка и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина сто­ро­ны тре­уголь­ни­ка

Б) Пло­щадь тре­уголь­ни­ка

1) 300 ко­рень из 3

2) 60 ко­рень из 3

3) 20 ко­рень из 3

4) 1200 ко­рень из 3

33.  
i

Най­ди­те два на­ту­раль­ных числа a и b, если из­вест­но, что от­но­ше­ние чисел a и b равно 2, а от­но­ше­ние суммы их квад­ра­тов этих чисел к их раз­но­сти равно 10.

A) Число a при­над­ле­жит про­ме­жут­ку

Б) Число b при­над­ле­жит про­ме­жут­ку

1) (6; 10)

2) (3; 5)

3) (1; 2]

4) (0; 1)

34.  
i

Даны урав­не­ния x в квад­ра­те минус 8x= минус 7 и 4 левая круг­лая скоб­ка 2,5 плюс 2x пра­вая круг­лая скоб­ка =2. По пред­став­лен­ным дан­ным уста­но­ви­те со­от­вет­ствие.

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из дан­ных урав­не­ний

Б) Ни одно число не яв­ля­ет­ся кор­нем дан­ных урав­не­ний

1) 1, 7, −1

2) 1, 7

3) 0, −7, 2

4) 0, 1, −1

35.  
i

Ариф­ме­ти­че­ская про­грес­сия (an) за­да­ет­ся фор­му­лой n⁠-⁠го члена: a_n=5 минус 3,6 n. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) a6

Б) a_4 минус a_2

1) −10,8

2) −3,6

3) −7,2

4) −16,6

36.  
i

Вы­чис­ли­те  ло­га­рифм по ос­но­ва­нию 2 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та конец ар­гу­мен­та .

1) −1
2) 0
3) 0,5
4) 1
5) 2
6) 3
37.  
i

Зна­че­ние вы­ра­же­ния 5 синус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби плюс 5 ко­си­нус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби равно

1) 5
2) 0
3) 1
4) −5
5) −1
6) 10
38.  
i

В ариф­ме­ти­че­ской про­грес­сии сумма пер­вых пят­на­дца­ти ее чле­нов на 8 мень­ше суммы пер­вых две­на­дца­ти чле­нов. Най­ди­те че­тыр­на­дца­тый член про­грес­сии и сумму пер­вых 27 ее чле­нов.

1) 14
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: 8, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби
5) −64
6) −72
39.  
i

Ре­ши­те си­сте­му ло­га­риф­ми­че­ских урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка x минус 2y минус 6 пра­вая круг­лая скоб­ка =0, новая стро­ка \log _2 левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка =1. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
5)  дробь: чис­ли­тель: 6, зна­ме­на­тель: 10 конец дроби
6)  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби
40.  
i

Дан тре­уголь­ник АВС, у ко­то­ро­го АВ = 15 м, ВС = 18 м и АС = 12 м. Най­ди­те длину бис­сек­три­сы АD.

1) 11 м
2) 12 м
3) 6 м
4) 14 м
5) 8 м
6) 10 м