Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 22949
1.  
i

Упро­сти­те чис­ло­вые вы­ра­же­ния (за­да­ния всту­пи­тель­ных эк­за­ме­нов)  ко­рень из: на­ча­ло ар­гу­мен­та: 43 минус 30 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 43 плюс 30 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец ар­гу­мен­та .

1) 20
2) 10
3) 0
4) 5
2.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: a в квад­ра­те плюс 4a, зна­ме­на­тель: a в квад­ра­те плюс 8a плюс 16 конец дроби и най­ди­те его зна­че­ние при a= минус 2.

1) −2
2) −1
3) 2
4) −4
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния: 2 ко­си­нус в квад­ра­те 15 гра­ду­сов минус 2 синус в квад­ра­те 15 гра­ду­сов .

1)  дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби
3)  ко­рень из 3
4) 1
4.  
i

Ука­жи­те вер­ное раз­ло­же­ние на мно­жи­те­ли мно­го­чле­на 2a в квад­ра­те плюс 3ab плюс b в квад­ра­те .

1)  левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс 2b пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 2a плюс b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс 2b пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 2a плюс b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка в квад­ра­те
5.  
i

Ре­ши­те урав­не­ние: 22 минус левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 7 минус 5x пра­вая круг­лая скоб­ка .

1) 2
2) 3
3) −2
4) 0
6.  
i

Pешите си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний x минус y минус 2 = 0,2x минус 3y плюс 1 = 0. конец си­сте­мы .

1) (8; 5)
2) (7; 5)
3) (4; 7)
4) (5; 7)
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус 4 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс 5 в сте­пе­ни левая круг­лая скоб­ка 5x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.

1)  минус дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 5 конец дроби плюс дробь: чис­ли­тель: 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс дробь: чис­ли­тель: 5 в сте­пе­ни левая круг­лая скоб­ка 5x минус 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 5 конец дроби плюс C
2)  минус дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 2 конец дроби плюс дробь: чис­ли­тель: 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс дробь: чис­ли­тель: 5 в сте­пе­ни левая круг­лая скоб­ка 5x минус 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 5 конец дроби плюс C
3)  минус дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 2 конец дроби минус дробь: чис­ли­тель: 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби минус дробь: чис­ли­тель: 5 в сте­пе­ни левая круг­лая скоб­ка 5x минус 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 5 конец дроби плюс C
4)  минус дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 2 конец дроби плюс дробь: чис­ли­тель: 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс дробь: чис­ли­тель: 3125 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 5 конец дроби плюс C
8.  
i

Пря­мо­уголь­ный тре­уголь­ник с ги­по­те­ну­зой 12 см и ост­рым углом 60° вра­ща­ет­ся во­круг мень­ше­го ка­те­та. Най­ди­те вы­со­ту по­лу­чен­ной фи­гу­ры вра­ще­ния.

1) 8 см
2) 10 см
3) 12 см
4) 6 см
9.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: x, зна­ме­на­тель: 6 конец дроби минус дробь: чис­ли­тель: x, зна­ме­на­тель: 3 конец дроби боль­ше 2,4x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби мень­ше x. конец си­сте­мы .

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 4 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 12 пра­вая круг­лая скоб­ка
10.  
i

Ре­ши­те урав­не­ние:  синус левая круг­лая скоб­ка 2x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка = 1.

1)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс Пи k, k при­над­ле­жит Z
2) 2 Пи k, k при­над­ле­жит Z
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс Пи k, k при­над­ле­жит Z
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k, k при­над­ле­жит Z
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3 левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та , про­хо­дя­щую через точку  левая круг­лая скоб­ка 10;15 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 12, зна­ме­на­тель: 5 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 2x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 15 минус дробь: чис­ли­тель: 12 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби плюс 2 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
2)  дробь: чис­ли­тель: 12, зна­ме­на­тель: 5 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 2x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 15 минус дробь: чис­ли­тель: 12 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби минус 2 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
3)  дробь: чис­ли­тель: 12, зна­ме­на­тель: 5 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 2x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 15 минус дробь: чис­ли­тель: 12 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби минус 2 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
4)  дробь: чис­ли­тель: 12, зна­ме­на­тель: 5 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 2x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 15 минус дробь: чис­ли­тель: 12 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби минус 2 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
12.  
i

Pешите не­ра­вен­ство: 4 левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка плюс 5x боль­ше или равно 3x.

1)  левая квад­рат­ная скоб­ка минус 2; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка 2; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
13.  
i

Ка­те­ты пря­мо­уголь­но­го тре­уголь­ни­ка равны 10 и 24. Вы­со­та, про­ведённая к ги­по­те­ну­зе, равна

1)  целая часть: 9, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 13
2) 14
4)  целая часть: 6, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 13
6)  целая часть: 6, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 11
14.  
i

По­ло­жи­тель­ный ко­рень  ин­те­грал пре­де­лы: от 0 до t, левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка dx =6 равен?

1) 6
2) 4
3) 5
4) 2
15.  
i

B пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD точка O — центр ос­но­ва­ния, S — вер­ши­на, SA = 10 см и BD = 16 см. Най­ди­те длину от­рез­ка SO.

1) 7 см
2) 8 см
3) 5 см
4) 6 см
16.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 6x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус x конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 14 конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус x конец ар­гу­мен­та .

1) −9
2) −7
3) −5
4) 5
17.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни y умно­жить на 2 в сте­пе­ни x = 972,y минус x = 3. конец си­сте­мы .

1) (3; 1)
2) (4; 3)
3) (2; 5)
4) (2; 4)
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=3x в квад­ра­те минус 3x плюс 3,y= минус 3x плюс 2,0 мень­ше или равно x мень­ше или равно 1.

1) 6
2) 14
3) 2
4) 1,5
19.  
i

Най­ди­те ко­ли­че­ство сто­рон мно­го­уголь­ни­ка, если каж­дый его угол равен 170 гра­ду­сов.

1) 32
2) 40
3) 24
4) 36
20.  
i

Гео­мет­ри­че­ская про­грес­сия {bn} — воз­рас­та­ю­щая, b_2=4, b_4=36. Най­ди­те b5.

1) 122
2) 36
3) 81
4) 108
21.  
i

Упро­сти­те вы­ра­же­ние: \overrightarrowNF плюс \overrightarrowFA плюс левая круг­лая скоб­ка \overrightarrowLK минус \overrightarrowLA пра­вая круг­лая скоб­ка минус \overrightarrowMD плюс \overrightarrowKD.

1) \overrightarrowAF
2) \overrightarrowNM
3) \overrightarrowMD
4) \overrightarrowND
22.  
i

Упро­сти­те:  левая круг­лая скоб­ка a b в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка плюс b a в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка a b пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: a в квад­ра­те минус b в квад­ра­те конец дроби
2)  дробь: чис­ли­тель: ab, зна­ме­на­тель: a в квад­ра­те минус b в квад­ра­те конец дроби
3)  дробь: чис­ли­тель: ab, зна­ме­на­тель: a в квад­ра­те плюс b в квад­ра­те конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: a в квад­ра­те плюс b в квад­ра­те конец дроби
23.  
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: 2 минус ло­га­рифм по ос­но­ва­нию 2 x конец ар­гу­мен­та = ло­га­рифм по ос­но­ва­нию 2 x.

1) 2
2) 4
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
24.  
i

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство \ctg x боль­ше дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби .

1)  левая круг­лая скоб­ка Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
2)  левая круг­лая скоб­ка 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
3)  левая круг­лая скоб­ка Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
4)  левая круг­лая скоб­ка 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =e в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка ,x_0=1.

1) y = ex
2) y = e в сте­пе­ни x
3) y = ex плюс 1
4) y = ex минус 1
26.  
i

В ка­би­не­те ма­те­ма­ти­ки име­ет­ся шкаф с тремя пол­ка­ми для мо­де­лей объ­ем­ных раз­но­цвет­ных фигур — пи­ра­мид, шара, па­рал­ле­ле­пи­пе­да, ко­ну­са, приз­мы, тет­ра­эд­ра, ци­лин­дра общим ко­ли­че­ством 14 штук (по две мо­де­ли каж­до­го вида).

Ка­ко­ва ве­ро­ят­ность на­у­гад взять фи­гу­ру, яв­ля­ю­щу­ю­ся телом вра­ще­ния?

1)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 7 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби 14
4)  дробь: чис­ли­тель: 3, зна­ме­на­тель: конец дроби 14
27.  
i

Зда­ние-мо­не­та

b — тол­щи­на, d — малый диа­метр,

H — вы­со­та, L — длина ос­но­ва­ния.

В ки­тай­ском го­ро­де Гу­ан­чжоу на­хо­дит­ся уни­каль­ное зда­ние в форме огром­но­го диска с от­вер­сти­ем внут­ри. Ита­льян­ская ком­па­ния, раз­ра­бо­тав­шая про­ект, утвер­жда­ет, что в ос­но­ву формы легли неф­ри­то­вые диски, ко­то­ры­ми вла­де­ли древ­ние ки­тай­ские пра­ви­те­ли и знать. Они сим­во­ли­зи­ро­ва­ли вы­со­кие нрав­ствен­ные ка­че­ства че­ло­ве­ка. Кроме того, вме­сте со своим от­ра­же­ни­ем в Жем­чуж­ной реке, на ко­то­рой стоит зда­ние, оно об­ра­зу­ет цифру 8, что озна­ча­ет у ки­тай­цев число «Сча­стье».

Зда­ние-мо­не­та имеет тол­щи­ну 30 м, вы­со­ту 138 м и в цен­тре круга рас­по­ло­же­но круг­лое от­вер­стие диа­мет­ром 48 м, ко­то­рое имеет функ­ци­о­наль­ное, а не толь­ко ди­зай­нер­ское зна­че­ние. Во­круг него будет рас­по­ло­же­на ос­нов­ная тор­го­вая зона. Зда­ние яв­ля­ет­ся самым вы­со­ким среди круг­лых зда­ний в мире и на­счи­ты­ва­ет 33 этажа, а его общая пло­щадь со­став­ля­ет 85 000 м2.

Опре­де­ли­те длину ос­но­ва­ния, зная что боль­шой ра­ди­ус «диска» равен 74 метра Ответ округ­ли­те до целых.

1) 70 м
2) 65 м
3) 72 м
4) 74 м
28.  
i

Зда­ние-мо­не­та

b — тол­щи­на, d — малый диа­метр,

H — вы­со­та, L — длина ос­но­ва­ния.

В ки­тай­ском го­ро­де Гу­ан­чжоу на­хо­дит­ся уни­каль­ное зда­ние в форме огром­но­го диска с от­вер­сти­ем внут­ри. Ита­льян­ская ком­па­ния, раз­ра­бо­тав­шая про­ект, утвер­жда­ет, что в ос­но­ву формы легли неф­ри­то­вые диски, ко­то­ры­ми вла­де­ли древ­ние ки­тай­ские пра­ви­те­ли и знать. Они сим­во­ли­зи­ро­ва­ли вы­со­кие нрав­ствен­ные ка­че­ства че­ло­ве­ка. Кроме того, вме­сте со своим от­ра­же­ни­ем в Жем­чуж­ной реке, на ко­то­рой стоит зда­ние, оно об­ра­зу­ет цифру 8, что озна­ча­ет у ки­тай­цев число «Сча­стье».

Зда­ние-мо­не­та имеет тол­щи­ну 30 м, вы­со­ту 138 м и в цен­тре круга рас­по­ло­же­но круг­лое от­вер­стие диа­мет­ром 48 м, ко­то­рое имеет функ­ци­о­наль­ное, а не толь­ко ди­зай­нер­ское зна­че­ние. Во­круг него будет рас­по­ло­же­на ос­нов­ная тор­го­вая зона. Зда­ние яв­ля­ет­ся самым вы­со­ким среди круг­лых зда­ний в мире и на­счи­ты­ва­ет 33 этажа, а его общая пло­щадь со­став­ля­ет 85 000 м2.

Опре­де­ли­те общую пло­щадь пола 17-го этажа, зная что он лежит в плос­ко­сти, про­хо­дя­щий через центр.

1) 3000 м2
2) 3500 м2
3) 4000 м2
4) 4500 м2
29.  
i

Самат стро­ит дач­ный домик формы пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с раз­ме­ра­ми 6 м х 4 м и вы­со­той 3 м. Для этого он за­ку­пил сте­но­вые па­не­ли «Сэнд­вич» раз­ме­ра­ми 3 м х 1 м, и двер­ное по­лот­но с раз­ме­ра­ми 2,1 м х 1 м, окон­ные блоки раз­ме­ра­ми 1,8 м х 1,2 м.

Ка­ко­ва длина за­бо­ра во­круг до­ми­ка. если забор от­сто­ит от до­ми­ка на 5 м?

1) 40 м
2) 20 м
3) 80 м
4) 60 м
30.  
i

Зда­ние-мо­не­та

b — тол­щи­на, d — малый диа­метр,

H — вы­со­та, L — длина ос­но­ва­ния.

В ки­тай­ском го­ро­де Гу­ан­чжоу на­хо­дит­ся уни­каль­ное зда­ние в форме огром­но­го диска с от­вер­сти­ем внут­ри. Ита­льян­ская ком­па­ния, раз­ра­бо­тав­шая про­ект, утвер­жда­ет, что в ос­но­ву формы легли неф­ри­то­вые диски, ко­то­ры­ми вла­де­ли древ­ние ки­тай­ские пра­ви­те­ли и знать. Они сим­во­ли­зи­ро­ва­ли вы­со­кие нрав­ствен­ные ка­че­ства че­ло­ве­ка. Кроме того, вме­сте со своим от­ра­же­ни­ем в Жем­чуж­ной реке, на ко­то­рой стоит зда­ние, оно об­ра­зу­ет цифру 8, что озна­ча­ет у ки­тай­цев число «Сча­стье».

Зда­ние-мо­не­та имеет тол­щи­ну 30 м, вы­со­ту 138 м и в цен­тре круга рас­по­ло­же­но круг­лое от­вер­стие диа­мет­ром 48 м, ко­то­рое имеет функ­ци­о­наль­ное, а не толь­ко ди­зай­нер­ское зна­че­ние. Во­круг него будет рас­по­ло­же­на ос­нов­ная тор­го­вая зона. Зда­ние яв­ля­ет­ся самым вы­со­ким среди круг­лых зда­ний в мире и на­счи­ты­ва­ет 33 этажа, а его общая пло­щадь со­став­ля­ет 85 000 м2.

Опре­де­ли­те объем круг­ло­го от­вер­стия рас­по­ло­жен­но­го в цен­тре зда­ния. Ответ округ­ли­те до целых.

1) 57294 м3
2) 54259 м3
3) 56233 м3
4) 55255 м3
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = 2 синус x. Уста­но­ви­те со­от­вет­ствия:

A) Нули функ­ции

Б) Об­ласть до­пу­сти­мых зна­че­ний функ­ции

1) [−1; 1]

2)  левая фи­гур­ная скоб­ка 2 Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка

3)  левая фи­гур­ная скоб­ка Пи k: k при­над­ле­жит Z }

4) [−2; 2]

32.  
i

Пло­щадь се­че­ния шара, удалённого на 2 от цен­тра шара, равна 5π. Уста­но­ви­те со­от­вет­ствие между пло­ща­дью по­верх­но­сти шара, его ра­ди­у­сом и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Пло­щадь по­верх­но­сти шара

Б) Ра­ди­ус шара

1) [3; 10)

2) (110; 116]

3) (60; 80)

4) [120; 124]

33.  
i

Най­ди­те два на­ту­раль­ных числа a и b, от­но­ше­ние ко­то­рых равно 3, а от­но­ше­ние суммы их квад­ра­тов к их сумме равно 10. Уста­но­ви­те со­от­вет­ствия:

A) Число a при­над­ле­жит про­ме­жут­ку

Б) Число b при­над­ле­жит про­ме­жут­ку

1) [1; 3)

2) [3; 4]

3) (10; 12]

4) (6; 8)

34.  
i

Даны урав­не­ния  дробь: чис­ли­тель: x в квад­ра­те минус 6x плюс 5, зна­ме­на­тель: x минус 1 конец дроби = 0 и  левая круг­лая скоб­ка x в квад­ра­те минус 4 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та = 0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 0, 3, 4

2) 5, 2, 8

3) −1, 0, 3

4) 5, 1, 2

35.  
i

Про­из­ве­де­ние вто­ро­го и чет­вер­то­го чле­нов гео­мет­ри­че­ской про­грес­сии равно 36. Пер­вый член про­грес­сии в два раза боль­ше вто­ро­го. Все члены этой про­грес­сии по­ло­жи­тель­ны. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b3

Б) b1

1) 3

2) 6

3) 12

4) 24

36.  
i

Рис со­дер­жит 75% крах­ма­ла, а яч­мень — 60% крах­ма­ла. Сколь­ко надо взять яч­ме­ня, чтобы в нем со­дер­жа­лось столь­ко же крах­ма­ла, сколь­ко его со­дер­жит­ся в 5 кг риса. Вы­бе­ри­те про­ме­жут­ки, в ко­то­рые вхо­дит пра­виль­ный ответ.

1) [5; 5,5)
2) [6; 6,25)
3) (5; 6,5]
4) [6,5; 7]
5) (6; 6,25]
6) (6,75; 7]
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби \ctg дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби .

1) −3
2) 3
3) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4)  минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
5) −1
6) 1
38.  
i

Ука­жи­те пер­вые пять чле­нов по­сле­до­ва­тель­но­сти, со­став­лен­ной из зна­че­ний функ­ции y = ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из 2 пра­вая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка ко­рень из 2 пра­вая круг­лая скоб­ка , при x боль­ше 1, где x — число, яв­ля­ю­ще­е­ся сте­пе­нью числа 2.

1) 2; 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 4; 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та : 8
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 4 ; 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 8
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 2 ; 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 8 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 8 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 10 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
5) 1 ; ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 2 ; 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 4
6)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 8 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 16 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
39.  
i

Ре­ши­те си­сте­му, при­во­ди­мую к со­дер­жа­щей од­но­род­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка дробь: чис­ли­тель: x плюс y, зна­ме­на­тель: x минус y конец дроби плюс дробь: чис­ли­тель: x минус y, зна­ме­на­тель: x плюс y конец дроби = дробь: чис­ли­тель: 13, зна­ме­на­тель: 6 конец дроби , новая стро­ка xy=5. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x_1y_1 плюс x_2y_2.

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 100 конец ар­гу­мен­та
2) 12
3)  дробь: чис­ли­тель: 20, зна­ме­на­тель: 2 конец дроби
4) 5
5) 10
6) 8
40.  
i

В ос­но­ва­нии пря­мой приз­мы лежит рав­но­бед­рен­ная тра­пе­ция, тупой угол ко­то­рой равен 120°. Диа­го­наль тра­пе­ции яв­ля­ет­ся бис­сек­три­сой остро­го угла. Диа­го­наль приз­мы об­ра­зу­ет с ос­но­ва­ни­ем угол 45°. Мень­шее ос­но­ва­ние равно 4. Число V — объем приз­мы. Ука­жи­те не­чет­ные де­ли­те­ли числа V.

1) 1
2) 3
3) 11
4) 2
5) 9
6) 3