Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 35319
1.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка 6 в кубе плюс дробь: чис­ли­тель: 2 в сте­пе­ни 8 , зна­ме­на­тель: 3 в квад­ра­те конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни 0 минус левая круг­лая скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в квад­ра­те минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в квад­ра­те .

1)  целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 4
2)  минус целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 18
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 15, зна­ме­на­тель: 16 конец дроби
2.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: a в сте­пе­ни левая круг­лая скоб­ка минус 11 пра­вая круг­лая скоб­ка умно­жить на a в сте­пе­ни 4 , зна­ме­на­тель: a в сте­пе­ни левая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка конец дроби   и най­ди­те его зна­че­ние при a= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби . В от­ве­те за­пи­ши­те по­лу­чен­ное число.

1) 16
2) 8
3) 2
4) 4
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 24 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка синус левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка .

1) 12 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
2) −12
3) −48
4) 24
4.  
i

Дан­ное вы­ра­же­ние  минус левая круг­лая скоб­ка 3,5x минус y пра­вая круг­лая скоб­ка плюс 3 левая круг­лая скоб­ка минус 2y плюс 0,5x пра­вая круг­лая скоб­ка имеет стан­дарт­ный вид

1) 2x минус 5y
2)  минус 2x минус 5y
3) 2x плюс 5y
4)  минус 2x минус 7y
5.  
i

Ука­жи­те урав­не­ние, не яв­ля­ю­ще­е­ся ли­ней­ным урав­не­ни­ем с двумя пе­ре­мен­ны­ми.

1)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 7 конец дроби x минус y = 7
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 7x конец дроби минус y = минус 7
3)  дробь: чис­ли­тель: 5x, зна­ме­на­тель: 7 конец дроби плюс y = 7
4)  дробь: чис­ли­тель: 5x, зна­ме­на­тель: 7 конец дроби минус y = минус 7
6.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 5x минус 2y = 15, минус 2x плюс y = минус 7. конец си­сте­мы .

1) (3; 0)
2) (0; −7,5)
3) (1; 3)
4) (1; −5)
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс x в кубе плюс x минус 3, зна­ме­на­тель: x в квад­ра­те плюс 1 конец дроби dx.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x левая круг­лая скоб­ка 2x в квад­ра­те плюс 3x минус 6 пра­вая круг­лая скоб­ка минус 3 арк­тан­генс x плюс C
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x левая круг­лая скоб­ка 2x в квад­ра­те плюс 3x минус 6 пра­вая круг­лая скоб­ка минус 2 арк­тан­генс x плюс C
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x левая круг­лая скоб­ка 2x в квад­ра­те минус 3x минус 6 пра­вая круг­лая скоб­ка минус 2 арк­тан­генс x плюс C
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x левая круг­лая скоб­ка 2x в квад­ра­те плюс 3x минус 6 пра­вая круг­лая скоб­ка плюс 2 арк­тан­генс x плюс C
8.  
i

Об­ра­зу­ю­щая ко­ну­са равна 6 и со­став­ля­ет с плос­ко­стью ос­но­ва­ния угол 30°. Най­ди­те пло­щадь ос­но­ва­ния ко­ну­са.

1) 9π
2) 32π
3) 18π
4) 27π
9.  
i

Pешите си­сте­му не­ра­венств

 си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в квад­ра­те минус 2 x плюс 1 конец дроби боль­ше или равно 0, дробь: чис­ли­тель: x в квад­ра­те минус 2 x минус 3, зна­ме­на­тель: левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те конец дроби мень­ше или равно 0. конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка 0 ; 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1 ; 2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 4 ; 6 пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка 1 ; бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка минус 1 ; 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1 ; 2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 2 ; 3 пра­вая квад­рат­ная скоб­ка
4) (3; 4)
10.  
i

Ре­ши­те урав­не­ние  ко­си­нус левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1)  \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби Пи k,k при­над­ле­жит Z
2)  левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка в сте­пе­ни k Пи плюс 3 Пи k,k при­над­ле­жит Z
3)  \pm Пи плюс 6 Пи k,k при­над­ле­жит Z
4)  левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка в сте­пе­ни k дробь: чис­ли­тель: Пи , зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби Пи k,k при­над­ле­жит Z
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции \ левая квад­рат­ная скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 2x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка минус 3x в квад­ра­те пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 1;5 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби минус x в кубе минус дробь: чис­ли­тель: 11, зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби плюс x в кубе
3)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби минус x в кубе плюс дробь: чис­ли­тель: 11, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: x в кубе , зна­ме­на­тель: 3 конец дроби минус x в квад­ра­те плюс дробь: чис­ли­тель: 11, зна­ме­на­тель: 3 конец дроби
12.  
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 8, зна­ме­на­тель: 4x минус 2 конец дроби мень­ше 0.

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 1 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка
13.  
i

Най­ди­те угол В тре­уголь­ни­ка АВС, если А(1; 1), В(4; 1) и С(4; 5).

1) 90°
2) 60°
3) 135°
4) 120°
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 0 до 1, ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та dx.

1)  дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 2, зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 2, зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 2, зна­ме­на­тель: 5 конец дроби
4)  дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 2, зна­ме­на­тель: 3 конец дроби
15.  
i

Из точки к плос­ко­сти про­ве­де­ны пер­пен­ди­ку­ляр и на­клон­на под углом 30° к ее про­ек­ции. Най­ди­те длину на­клон­ной, если длина пер­пен­ди­ку­ля­ра 12 см.

1) 8 см
2) 6 см
3) 24 см
4) 12 см
16.  
i

Ре­ши­те урав­не­ние 2 в сте­пе­ни левая круг­лая скоб­ка 4x пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 4 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка минус 1.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
3) 0
4) −1
17.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний x минус y=2 Пи , синус x плюс ко­си­нус y=1 . конец си­сте­мы .

1)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка \pm дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи левая круг­лая скоб­ка k плюс 1 пра­вая круг­лая скоб­ка , \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка : k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка
2)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка \pm дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k , \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка : k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка
3)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k, \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка : k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка
4)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи левая круг­лая скоб­ка k плюс 1 пра­вая круг­лая скоб­ка , \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка : k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс 2x,y=x плюс 2.

1)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 31, зна­ме­на­тель: 6 конец дроби
19.  
i

Пра­виль­ный n-уголь­ник впи­сан в окруж­ность. Её ра­ди­ус со­став­ля­ет с одной из сто­рон n-уголь­ни­ка угол 54°. Най­ди­те n.

1) 6
2) 4
3) 5
4) 7
20.  
i

Вы­чис­ли­те сумму бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии: 0,6; 0,06; 0,006,...

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби
3)  дробь: чис­ли­тель: 8, зна­ме­на­тель: 9 конец дроби
4)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
21.  
i

Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров \overrightarrowAB и \overrightarrowCD, если A левая круг­лая скоб­ка 5;12; минус 3 пра­вая круг­лая скоб­ка ; B левая круг­лая скоб­ка 10; минус 2;14 пра­вая круг­лая скоб­ка ; C левая круг­лая скоб­ка 4; минус 20;7 пра­вая круг­лая скоб­ка ; D левая круг­лая скоб­ка 12;8;3 пра­вая круг­лая скоб­ка .

1) −400
2) −360
3) 420
4) −420
22.  
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та плюс 4, при x мень­ше 2.

1) x плюс 2
2) 6 минус x
3)  минус x минус 2
4) x плюс 6
23.  
i

Ре­ши­те урав­не­ние \log _x левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка =0,5.

1) 4
2) 1
3) 2
4) 5
24.  
i

Ре­ши­те не­ра­вен­ство 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка минус 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка боль­ше или равно 96.

1)  левая квад­рат­ная скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 6 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка 4; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 6; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та ,x_0=4.

1) y = дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x плюс 1
2) y = дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x минус 1
3) y = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби x плюс 1
4) y = 4x плюс 1
26.  
i

Mишень в тире раз­де­ле­на на три сек­то­ра раз­но­го цвета: го­лу­бой, крас­ный и жел­тый. Два стрел­ка, стре­ляя по ми­ше­ни, все­гда по­ра­жа­ют один из сек­то­ров. Ве­ро­ят­ность по­па­да­ния пер­во­го стрел­ка в крас­ную часть ми­ше­ни равна 0,45, а в го­лу­бую — 0,35. Ве­ро­ят­ность по­па­да­ния в жел­тую часть ми­ше­ни вто­ро­го стрел­ка равна 0,7.

Hай­ди­те ве­ро­ят­ность того, что пер­вый стре­лок попал в крас­ную или го­лу­бую часть ми­ше­ни.

1) 0,8
2) 0,35
3) 0,26
4) 0,2
27.  
i

Уче­ник за­пла­ни­ро­вал ре­монт в своей ком­на­те дли­ной 4 м, ши­ри­ной 5,25 м и вы­со­той 3 м. Он решил про­фес­си­о­наль­но со­ста­вить смету, чтобы уло­жить­ся в бюд­жет. Для по­тол­ка уче­ник вы­брал на­тяж­ные по­тол­ки с мон­та­жом, на стены решил по­кле­ить обои, а для ре­мон­та пола вы­брал ла­ми­нат, так как по ре­ко­мен­да­ци­ям он очень прак­ти­чен и раз­но­об­ра­зен.

Tаб­ли­ца цен на стро­и­тель­ный ма­те­ри­ал в г.Нур-Сул­тан

На­име­но­ва­ние ма­те­ри­а­ла

Цена (тенге)
1Обои (длина 12 м, ши­ри­на 1 м)11 500
2На­тяж­ные по­тол­ки с мон­та­жом
(1 кв. м)
1200
3Ла­ми­нат (1 кв. м)6200
4Гал­те­ли (длина 2,2 м)1050
5Клей для гал­те­лей (тюбик 310 мл),
1 тюб на 20 м
900
6Клей для обоев, 1 пачка на 25 м2850
7Плин­тус (длина 2,2 м)690
8Клей для плин­ту­са (тюбик 310 мл),
1 тюб на 20 м
900

Чему равен пе­ри­метр по­тол­ка в ком­на­те?

1) 19 м
2) 18 м
3) 20,5 м
4) 18,5 м
28.  
i

Бро­са­ют од­но­вре­мен­но два иг­раль­ных ку­би­ка, на гра­нях ко­то­рых рас­по­ло­же­ны числа от 1 до 6.

Сколь­ки­ми спо­со­ба­ми может вы­пасть в сумме число 5?

1) 3
2) 6
3) 9
4) 4
29.  
i

Бро­са­ют од­но­вре­мен­но два иг­раль­ных ку­би­ка, на гра­нях ко­то­рых рас­по­ло­же­ны числа от 1 до 6.

Сколь­ки­ми спо­со­ба­ми может вы­пасть в сумме чет­ное число?

1) 10
2) 16
3) 18
4) 14
30.  
i

Уче­ник за­пла­ни­ро­вал ре­монт в своей ком­на­те дли­ной 4 м, ши­ри­ной 5,25 м и вы­со­той 3 м. Он решил про­фес­си­о­наль­но со­ста­вить смету, чтобы уло­жить­ся в бюд­жет. Для по­тол­ка уче­ник вы­брал на­тяж­ные по­тол­ки с мон­та­жом, на стены решил по­кле­ить обои, а для ре­мон­та пола вы­брал ла­ми­нат, так как по ре­ко­мен­да­ци­ям он очень прак­ти­чен и раз­но­об­ра­зен.

Tаб­ли­ца цен на стро­и­тель­ный ма­те­ри­ал в г.Нур-Сул­тан

На­име­но­ва­ние ма­те­ри­а­ла

Цена (тенге)
1Обои (длина 12 м, ши­ри­на 1 м)11 500
2На­тяж­ные по­тол­ки с мон­та­жом
(1 кв. м)
1200
3Ла­ми­нат (1 кв. м)6200
4Гал­те­ли (длина 2,2 м)1050
5Клей для гал­те­лей (тюбик 310 мл),
1 тюб на 20 м
900
6Клей для обоев, 1 пачка на 25 м2850
7Плин­тус (длина 2,2 м)690
8Клей для плин­ту­са (тюбик 310 мл),
1 тюб на 20 м
900

Kакова сто­и­мость ре­мон­та стен в ком­на­те, если учесть, что в ком­на­те 2 окна с раз­ме­ра­ми 2 м на 1,5 м и двери вы­со­той 2 м и ши­ри­ной 1 м?

1) 35 720 тг
2) 45 200 тг
3) 49 650 тг
4) 47 700 тг
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = 2 синус x. Уста­но­ви­те со­от­вет­ствия:

A) Нули функ­ции

Б) Об­ласть до­пу­сти­мых зна­че­ний функ­ции

1) [−1; 1]

2)  левая фи­гур­ная скоб­ка 2 Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка

3)  левая фи­гур­ная скоб­ка Пи k: k при­над­ле­жит Z }

4) [−2; 2]

32.  
i

Ци­линдр, осе­вым се­че­ни­ем ко­то­ро­го яв­ля­ет­ся квад­рат, впи­сан в шар, ра­ди­ус ко­то­ро­го равен 4. Уста­но­ви­те со­от­вет­ствие между вы­со­той ци­лин­дра, его объ­е­мом и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Вы­со­та ци­лин­дра

Б) Объем ци­лин­дра

1) [176; 188)

2) (3; 5)

3) (5; 6)

4) (138; 151]

33.  
i

Най­ди­те два на­ту­раль­ных числа x и y, если из­вест­но, что раз­ность чисел x и y равна 1, а сумма квад­ра­тов этих чисел равно 41.

A) Число x при­над­ле­жит про­ме­жут­ку

Б) Число y при­над­ле­жит про­ме­жут­ку

1) (5; 7)

2) (0; 1)

3) [5; 6]

4) (1; 4]

34.  
i

Даны урав­не­ния x в квад­ра­те плюс 8x минус 9 = 0 и 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка = 32. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) −9, 3, 1

2) −1, 0, 2

3) −9, 4, 1

4) 7, 8, 9

35.  
i

В ариф­ме­ти­че­ской про­грес­сии (an) тре­тий член равен 20, раз­ность про­грес­сии d  =  –3,2. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) a1

Б) S6

1) 100,8

2) 110,4

3) 26,4

4) 16,8

36.  
i

Ука­жи­те вы­ра­же­ния, зна­че­ния ко­то­рых чис­лен­но равны  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

1) 2 синус 60 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка
2)  синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
3)  тан­генс 45 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка
4) 2 тан­генс 30 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка
5) \ctg 30 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка
6)  минус \ctg дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 24, зна­ме­на­тель: Пи конец дроби умно­жить на арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка .

1) 18
2) 32
3) –9
4) –18
5) 9
6) –32
38.  
i

Сумма трех чисел, со­став­ля­ю­щих ариф­ме­ти­че­скую про­грес­сию, у ко­то­рой раз­ность боль­ше нуля, равна 18. Если к этим чис­лам при­ба­вить со­от­вет­ствен­но 4, 2 и 18, то по­лу­чен­ные числа со­став­ля­ют пер­вые три члена гео­мет­ри­че­ской про­грес­сии. Най­ди­те эти три числа.

1) −2
2) 6
3) 8
4) 14
5) 10
6) 4
39.  
i

Ре­ши­те си­сте­му, при­во­ди­мую к со­дер­жа­щей од­но­род­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка x в квад­ра­те плюс 3xy=18, новая стро­ка 3y в квад­ра­те плюс xy=6. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x_1y_1 минус x_2y_2.

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 0 конец ар­гу­мен­та
3) 0
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6) 3
40.  
i

Из точки M к плос­ко­сти α про­ве­де­ны две на­клон­ные, длина ко­то­рых 18 см и 2 ко­рень из: на­ча­ло ар­гу­мен­та: 109 конец ар­гу­мен­та  см. Их про­ек­ции на эту плос­кость от­но­сят­ся как 3 : 4. Най­ди­те рас­сто­я­ние от точки M до плос­ко­сти α и длины их про­ек­ций.

1) 12 см
2) 16 см
3) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 77 конец ар­гу­мен­та  см
4) 12 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
5) 16 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
6) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та  см