Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 30712
1.  
i

Вы­пол­ни­те дей­ствия с ра­ди­ка­ла­ми 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3,5 конец ар­гу­мен­та минус 0,5 ко­рень из: на­ча­ло ар­гу­мен­та: 56 конец ар­гу­мен­та .

1) 1
2) 0
3) 3
4) 2
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния a в сте­пе­ни левая круг­лая скоб­ка 12 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка a в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни 4   при a = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1) 8
2) 32
3) 4
4) 16
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния: 12 синус 150 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка умно­жить на ко­си­нус 120 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка .

1) −12
2) −3
3) 6
4) 3
4.  
i

Пре­об­ра­зуй­те вы­ра­же­ние x в квад­ра­те плюс 4x плюс 2, вы­де­лив пол­ный квад­рат.

1)  левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те минус 2
2)  левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка в квад­ра­те минус 7
3)  левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те плюс 1
4)  левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те минус 2
5.  
i

Ко­рень урав­не­ния y = y', при y = x в квад­ра­те плюс 1 равен?

1) 3
2) 4
3) 2
4) 1
6.  
i

Ре­ши­те си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний xy= минус 12,x левая круг­лая скоб­ка 2y минус 1 пра­вая круг­лая скоб­ка = минус 18. конец си­сте­мы .

Если (x0; y0) — ре­ше­ние си­сте­мы, то x0 = 
1) −6
2) −16
3) 2
4) 6
7.  
i

Най­ди­те  при­над­ле­жит t левая круг­лая скоб­ка e в сте­пе­ни x плюс 3 в сте­пе­ни x плюс 2 пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 3 в сте­пе­ни x , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс 2x плюс C
2) e в сте­пе­ни x плюс дробь: чис­ли­тель: 3 в сте­пе­ни x , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс x плюс C
3) e в сте­пе­ни x плюс дробь: чис­ли­тель: 3 в сте­пе­ни x , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс 2x плюс C
4) e в сте­пе­ни x плюс дробь: чис­ли­тель: 3 в сте­пе­ни x , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс C
8.  
i

Пря­мо­уголь­ный тре­уголь­ник с ги­по­те­ну­зой 12 см и ост­рым углом 60° вра­ща­ет­ся во­круг мень­ше­го ка­те­та. Най­ди­те вы­со­ту по­лу­чен­ной фи­гу­ры вра­ще­ния.

1) 8 см
2) 10 см
3) 12 см
4) 6 см
9.  
i

Най­ди­те наи­мень­шее целое ре­ше­ние си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний 5 минус дробь: чис­ли­тель: 2, зна­ме­на­тель: x плюс 3 конец дроби боль­ше или равно 0, дробь: чис­ли­тель: 4x минус 7, зна­ме­на­тель: 2x плюс 3 конец дроби мень­ше 2 конец си­сте­мы .

1) −2
2) −1
3) 1
4) 2
10.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 2x= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3 левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та , про­хо­дя­щую через точку  левая круг­лая скоб­ка 10;15 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 12, зна­ме­на­тель: 5 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 2x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 15 минус дробь: чис­ли­тель: 12 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби плюс 2 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
2)  дробь: чис­ли­тель: 12, зна­ме­на­тель: 5 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 2x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 15 минус дробь: чис­ли­тель: 12 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби минус 2 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
3)  дробь: чис­ли­тель: 12, зна­ме­на­тель: 5 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 2x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 15 минус дробь: чис­ли­тель: 12 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби минус 2 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
4)  дробь: чис­ли­тель: 12, зна­ме­на­тель: 5 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 2x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 15 минус дробь: чис­ли­тель: 12 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби минус 2 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
12.  
i

Bыбе­ри­те урав­не­ние, ко­то­рое яв­ля­ет­ся квад­рат­ным урав­не­ни­ем с одной пе­ре­мен­ной

1) 5x плюс 3x в квад­ра­те = 8
2) 5x в сте­пе­ни 4 плюс 3x в квад­ра­те минус 18 = 0
3) 1,5x в квад­ра­те минус 8 плюс 25y в квад­ра­те = 0
4) 2x плюс 15 = 0
13.  
i

Ка­те­ты пря­мо­уголь­но­го тре­уголь­ни­ка равны 10 и 24. Вы­со­та, про­ведённая к ги­по­те­ну­зе, равна

1)  целая часть: 9, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 13
2) 14
4)  целая часть: 6, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 13
6)  целая часть: 6, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 11
14.  
i

По­ло­жи­тель­ный ко­рень  ин­те­грал пре­де­лы: от 0 до t, левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка dx =6 равен?

1) 6
2) 4
3) 5
4) 2
15.  
i

Най­ди­те диа­го­наль пря­мо­уголь­ной приз­мы, в ос­но­ва­нии ко­то­рой лежит пря­мо­уголь­ник со сто­ро­на­ми 8 см и 4 ко­рень из 5 см и бо­ко­вое ребро приз­мы 5 см.

1) 15 см
2) 11 см
3) 14 см
4) 13 см
16.  
i

Най­ди­те про­из­ве­де­ние кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния x в квад­ра­те минус 5x минус 3=4 ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 5x плюс 9. конец ар­гу­мен­та

1) −27
2) −18
3) 12
4) 27
17.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни y умно­жить на 2 в сте­пе­ни x = 972,y минус x = 3. конец си­сте­мы .

1) (3; 1)
2) (4; 3)
3) (2; 5)
4) (2; 4)
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=3x в квад­ра­те минус 3x плюс 3,y= минус 3x плюс 2,0 мень­ше или равно x мень­ше или равно 1.

1) 6
2) 14
3) 2
4) 1,5
19.  
i

Окруж­ность ра­ди­у­са 4 впи­са­на в пря­мо­уголь­ную тра­пе­цию с тупым углом 150°. Пло­щадь тра­пе­ции равна

1) 64
2) 35
3) 96
4) 56
20.  
i

Hай­ди­те S, где S — сумма бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии:  дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби 81; ...

1) S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
2) S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 16 конец дроби
3) S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби
4) S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби
21.  
i

Най­ди­те |\veca плюс \vecb|:

1) 6
2) 3
3) 2
4) 4
22.  
i

Зна­че­ние част­но­го

 дробь: чис­ли­тель: a в квад­ра­те плюс a минус 6, зна­ме­на­тель: 2 a в квад­ра­те плюс 5 a минус 3 конец дроби : дробь: чис­ли­тель: 3 a в квад­ра­те минус 5 a минус 2, зна­ме­на­тель: 2 a в квад­ра­те плюс a минус 1 конец дроби

равно

1)  дробь: чис­ли­тель: a плюс 1, зна­ме­на­тель: 3a плюс 1 конец дроби
2)  дробь: чис­ли­тель: 3a плюс 1, зна­ме­на­тель: a минус 1 конец дроби
3)  дробь: чис­ли­тель: 3a плюс 1, зна­ме­на­тель: a плюс 1 конец дроби
4)  дробь: чис­ли­тель: a минус 1, зна­ме­на­тель: 3a плюс 1 конец дроби
23.  
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка тан­генс x плюс 4 пра­вая круг­лая скоб­ка = 2.

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k, k при­над­ле­жит Z
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k, k при­над­ле­жит Z
3)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k, k при­над­ле­жит Z
4)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k, k при­над­ле­жит Z
24.  
i

Ре­ши­те не­ра­вен­ство \log _ дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби левая круг­лая скоб­ка x в квад­ра­те плюс 3x плюс 4 пра­вая круг­лая скоб­ка боль­ше или равно минус 1.

1) [−2; −1]
2) (−2; −1)
3)  левая квад­рат­ная скоб­ка минус 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та ,x_0=4.

1) y = дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x плюс 1
2) y = дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x минус 1
3) y = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби x плюс 1
4) y = 4x плюс 1
26.  
i

В ка­би­не­те ма­те­ма­ти­ки име­ет­ся шкаф с тремя пол­ка­ми для мо­де­лей объ­ем­ных раз­но­цвет­ных фигур — пи­ра­мид, шара, па­рал­ле­ле­пи­пе­да, ко­ну­са, приз­мы, тет­ра­эд­ра, ци­лин­дра общим ко­ли­че­ством 14 штук (по две мо­де­ли каж­до­го вида).

Ка­ко­ва ве­ро­ят­ность на­у­гад взять фи­гу­ру, яв­ля­ю­щу­ю­ся телом вра­ще­ния?

1)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 7 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби 14
4)  дробь: чис­ли­тель: 3, зна­ме­на­тель: конец дроби 14
27.  
i

Зда­ние-мо­не­та

b — тол­щи­на, d — малый диа­метр,

H — вы­со­та, L — длина ос­но­ва­ния.

В ки­тай­ском го­ро­де Гу­ан­чжоу на­хо­дит­ся уни­каль­ное зда­ние в форме огром­но­го диска с от­вер­сти­ем внут­ри. Ита­льян­ская ком­па­ния, раз­ра­бо­тав­шая про­ект, утвер­жда­ет, что в ос­но­ву формы легли неф­ри­то­вые диски, ко­то­ры­ми вла­де­ли древ­ние ки­тай­ские пра­ви­те­ли и знать. Они сим­во­ли­зи­ро­ва­ли вы­со­кие нрав­ствен­ные ка­че­ства че­ло­ве­ка. Кроме того, вме­сте со своим от­ра­же­ни­ем в Жем­чуж­ной реке, на ко­то­рой стоит зда­ние, оно об­ра­зу­ет цифру 8, что озна­ча­ет у ки­тай­цев число «Сча­стье».

Зда­ние-мо­не­та имеет тол­щи­ну 30 м, вы­со­ту 138 м и в цен­тре круга рас­по­ло­же­но круг­лое от­вер­стие диа­мет­ром 48 м, ко­то­рое имеет функ­ци­о­наль­ное, а не толь­ко ди­зай­нер­ское зна­че­ние. Во­круг него будет рас­по­ло­же­на ос­нов­ная тор­го­вая зона. Зда­ние яв­ля­ет­ся самым вы­со­ким среди круг­лых зда­ний в мире и на­счи­ты­ва­ет 33 этажа, а его общая пло­щадь со­став­ля­ет 85 000 м2.

Опре­де­ли­те длину ос­но­ва­ния, зная что боль­шой ра­ди­ус «диска» равен 74 метра Ответ округ­ли­те до целых.

1) 70 м
2) 65 м
3) 72 м
4) 74 м
28.  
i

Зда­ние-мо­не­та

b — тол­щи­на, d — малый диа­метр,

H — вы­со­та, L — длина ос­но­ва­ния.

В ки­тай­ском го­ро­де Гу­ан­чжоу на­хо­дит­ся уни­каль­ное зда­ние в форме огром­но­го диска с от­вер­сти­ем внут­ри. Ита­льян­ская ком­па­ния, раз­ра­бо­тав­шая про­ект, утвер­жда­ет, что в ос­но­ву формы легли неф­ри­то­вые диски, ко­то­ры­ми вла­де­ли древ­ние ки­тай­ские пра­ви­те­ли и знать. Они сим­во­ли­зи­ро­ва­ли вы­со­кие нрав­ствен­ные ка­че­ства че­ло­ве­ка. Кроме того, вме­сте со своим от­ра­же­ни­ем в Жем­чуж­ной реке, на ко­то­рой стоит зда­ние, оно об­ра­зу­ет цифру 8, что озна­ча­ет у ки­тай­цев число «Сча­стье».

Зда­ние-мо­не­та имеет тол­щи­ну 30 м, вы­со­ту 138 м и в цен­тре круга рас­по­ло­же­но круг­лое от­вер­стие диа­мет­ром 48 м, ко­то­рое имеет функ­ци­о­наль­ное, а не толь­ко ди­зай­нер­ское зна­че­ние. Во­круг него будет рас­по­ло­же­на ос­нов­ная тор­го­вая зона. Зда­ние яв­ля­ет­ся самым вы­со­ким среди круг­лых зда­ний в мире и на­счи­ты­ва­ет 33 этажа, а его общая пло­щадь со­став­ля­ет 85 000 м2.

Опре­де­ли­те общую пло­щадь пола 17-го этажа, зная что он лежит в плос­ко­сти, про­хо­дя­щий через центр.

1) 3000 м2
2) 3500 м2
3) 4000 м2
4) 4500 м2
29.  
i

Самат стро­ит дач­ный домик формы пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с раз­ме­ра­ми 6 м х 4 м и вы­со­той 3 м. Для этого он за­ку­пил сте­но­вые па­не­ли «Сэнд­вич» раз­ме­ра­ми 3 м х 1 м, и двер­ное по­лот­но с раз­ме­ра­ми 2,1 м х 1 м, окон­ные блоки раз­ме­ра­ми 1,8 м х 1,2 м.

Ка­ко­ва длина за­бо­ра во­круг до­ми­ка. если забор от­сто­ит от до­ми­ка на 5 м?

1) 40 м
2) 20 м
3) 80 м
4) 60 м
30.  
i

Пер­вый этаж дома со­сто­ит из ком­на­ты и ко­ри­до­ра пря­мо­уголь­ной формы, а также из кухни и ван­ной ком­на­ты квад­рат­ной формы. Вы­со­та по­тол­ков со­став­ля­ет 2,5 м.

Сколь­ко нужно за­пла­тить за ленту, ко­то­рой было ре­ше­но укра­сить стены одним рядом по пе­ри­мет­ру ком­на­ты, если 60 м такой ленты стоят 450 тенге.

1) 250 тенге
2) 200 тенге
3) 550 тенге
4) 300 тенге
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = 4 ко­си­нус x плюс 2. Уста­но­ви­те со­от­вет­ствие между наи­боль­шим и наи­мень­шим зна­че­ни­я­ми функ­ции и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Наи­боль­шее зна­че­ние функ­ции

Б) Наи­мень­шее зна­че­ние функ­ции

1) 1

2) 3

3) −2

4) 6

32.  
i

Две окруж­но­сти ра­ди­у­са­ми 2 и 3 ка­са­ют­ся внеш­ним об­ра­зом друг с дру­гом и внут­рен­ним об­ра­зом с окруж­но­стью ра­ди­у­са 15. Уста­но­ви­те со­от­вет­ствие между дли­ной боль­шей сто­ро­ны тре­уголь­ни­ка, об­ра­зо­ван­но­го цен­тра­ми окруж­но­стей, его ме­ди­а­ной, про­ве­ден­ной из вер­ши­ны боль­ше­го угла, и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина боль­шей сто­ро­ны тре­уголь­ни­ка

Б) Длина ме­ди­а­ны тре­уголь­ни­ка, про­ве­ден­ной из вер­ши­ны боль­ше­го угла

1) 12

2) 13

3) 6,5

4) 8

33.  
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  дробь: чис­ли­тель: левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в кубе левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в квад­ра­те плюс 2x плюс 1 конец дроби . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x2, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x2

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) (0; 5)

2) [6; 9)

3) (20; 30)

4) (10; 20)

34.  
i

Даны урав­не­ния x в квад­ра­те плюс 4 = x левая круг­лая скоб­ка 2x минус 3 пра­вая круг­лая скоб­ка и  левая круг­лая скоб­ка x в квад­ра­те плюс 4x пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x минус 3 конец ар­гу­мен­та = 0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) −1, 3, 4

2) 2, 1, 0

3) 5, −1, 4

4) 4, 1, 8

35.  
i

В ариф­ме­ти­че­ской про­грес­сии (an) вто­рой член равен 18, а раз­ность про­грес­сии d  =  2,4. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) a1

Б) S7

1) 15,6

2) 159,6

3) 13,2

4) 142,8

36.  
i

Зна­че­ние вы­ра­же­ния  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка де­ся­тич­ный ло­га­рифм ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка де­ся­тич­ный ло­га­рифм ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка равно

1) 2 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  минус 0,5
4) 0,2
5)  левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
6) 0,5
37.  
i

Зна­че­ние вы­ра­же­ния  ко­си­нус левая круг­лая скоб­ка альфа минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс ко­си­нус левая круг­лая скоб­ка альфа плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка равно

1)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2) 0
3)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
5) –1
6) 1
38.  
i

В ариф­ме­ти­че­ской про­грес­сии, со­сто­я­щей из 20 чле­нов, сумма 10 чле­нов с чет­ны­ми но­ме­ра­ми на 100 боль­ше, чем сумма 10 дру­гих ее чле­нов. Най­ди­те раз­ность про­грес­сии.

1) 10
2) 5
3) 8
4) 12
5)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 10 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
6)  ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та
39.  
i

Ре­ши­те си­сте­му

 си­сте­ма вы­ра­же­ний новая стро­ка 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка y плюс 1 пра­вая круг­лая скоб­ка =375, новая стро­ка 3 в сте­пе­ни левая круг­лая скоб­ка y минус 1 пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =15. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби конец ар­гу­мен­та
4) 2
5) 1
6) 0
40.  
i

В сфере, пло­щадь по­верх­но­сти ко­то­рой равна 3468 см2 (π ≈ 3), на рас­сто­я­нии OO1 от ее цен­тра про­ве­де­но се­че­ние. Вы­бе­ри­те из пред­став­лен­ных чисел те, ко­то­рые яв­ля­ют­ся де­ли­те­ля­ми зна­че­ния пло­ща­ди про­ве­ден­но­го се­че­ния.

1) 17
2) 5
3) 35
4) 25
5) 27
6) 55