Задания
Версия для печати и копирования в MS Word
Тип 7 № 8144
i

Най­ди­те  при­над­ле­жит t левая круг­лая скоб­ка e в сте­пе­ни x плюс 3 в сте­пе­ни x плюс 2 пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 3 в сте­пе­ни x , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс 2x плюс C
2) e в сте­пе­ни x плюс дробь: чис­ли­тель: 3 в сте­пе­ни x , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс x плюс C
3) e в сте­пе­ни x плюс дробь: чис­ли­тель: 3 в сте­пе­ни x , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс 2x плюс C
4) e в сте­пе­ни x плюс дробь: чис­ли­тель: 3 в сте­пе­ни x , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс C
Спрятать решение

Ре­ше­ние.

Най­дем не­опре­де­лен­ный ин­те­грал:

 при­над­ле­жит t левая круг­лая скоб­ка e в сте­пе­ни x плюс 3 в сте­пе­ни x плюс 2 пра­вая круг­лая скоб­ка dx = e в сте­пе­ни x плюс дробь: чис­ли­тель: 3 в сте­пе­ни x , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс 2x плюс C.

Пра­виль­ный ответ ука­зан под но­ме­ром 3.

Классификатор алгебры: Вы­чис­ле­ние ин­те­гра­лов