Вариант № 25347

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1

2
Тип 2 № 7866
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка a плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: a конец дроби плюс 2 пра­вая круг­лая скоб­ка умно­жить на дробь: чис­ли­тель: 1, зна­ме­на­тель: a плюс 1 конец дроби при a= минус 5.



3
Тип 3 № 3745
i

Най­ди­те зна­че­ние вы­ра­же­ния:  левая круг­лая скоб­ка ко­си­нус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби плюс ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби минус синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби пра­вая круг­лая скоб­ка .



4
Тип 4 № 7872
i

Ука­жи­те вер­ное раз­ло­же­ние на мно­жи­те­ли мно­го­чле­на a в квад­ра­те плюс 4ab плюс 3b в квад­ра­те .



5
Тип 5 № 3413
i

Най­ди­те от­ри­ца­тель­ный ко­рень урав­не­ния 8|x| минус 5|x| минус 17=0.



6
Тип 6 № 3417
i

Если пары (x1; y1) и (x2; y2) — ре­ше­ния си­сте­мы урав­не­ний

 си­сте­ма вы­ра­же­ний 2 x в квад­ра­те минус y=0, y плюс 3=5 x, конец си­сте­мы .

то най­ди­те m, где m= левая круг­лая скоб­ка y_1 минус x_1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка y_2 минус x_2 пра­вая круг­лая скоб­ка .



7
Тип 7 № 4193
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка ко­си­нус 2x ко­си­нус x плюс синус 2x синус x пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 3280
i

В шар ра­ди­у­сом 5 м впи­сан ци­линдр с диа­мет­ром ос­но­ва­ния 6 м. Вы­со­та ци­лин­дра равна



9
Тип 9 № 7895
i

Наи­мень­шее на­ту­раль­ное ре­ше­ние си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 3, зна­ме­на­тель: x плюс 4 конец дроби боль­ше или равно дробь: чис­ли­тель: 2, зна­ме­на­тель: x плюс 1 конец дроби , дробь: чис­ли­тель: 5, зна­ме­на­тель: x конец дроби боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус 5 конец дроби конец си­сте­мы . равно



10
Тип 10 № 6945
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 4x= дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби .



11
Тип 11 № 3278
i

Ука­жи­те общий вид пер­во­об­раз­ной для функ­ции: f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 в сте­пе­ни x .



12
Тип 12 № 8182
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 7, зна­ме­на­тель: 2x минус 3 конец дроби мень­ше 0.



13
Тип 13 № 2622
i

Синус боль­ше­го угла тре­уголь­ни­ка со сто­ро­на­ми 10 см, 17 см, 21 см равен



14
Тип 14 № 2549
i

Най­ди­те наи­мень­шее целое число, удо­вле­тво­ря­ю­щее не­ра­вен­ству:  при­над­ле­жит t\limits_0 в сте­пе­ни t левая круг­лая скоб­ка 2x плюс 3 пра­вая круг­лая скоб­ка dx мень­ше или равно 4.



15
Тип 15 № 3932
i

Най­ди­те угол между плос­ко­стя­ми, если  DC = MK =3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , DM =12 см и  CK =6 см.



16
Тип 16 № 2152
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 2x плюс 3 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 3 конец ар­гу­мен­та = 0.



17
Тип 17 № 3667
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: x минус 6 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x минус 12 конец ар­гу­мен­та мень­ше x минус 1,2x минус 3 мень­ше 33. конец си­сте­мы .



18
Тип 18 № 4156
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=3x в квад­ра­те минус 3x плюс 3,y=9x минус 2,x = 0,5,x = 1.



19
Тип 19 № 7912
i

Вы­со­та BH ромба ABCD делит его сто­ро­ну AD на от­рез­ки AH = 44 и HD=11. Най­ди­те пло­щадь ромба.



20
Тип 20 № 3843
i

Учи­тель дал за­да­ние: из пред­ло­жен­ных по­сле­до­ва­тель­но­стей

а)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби ;\ldots

б)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 24 конец дроби ;\ldots

в) 10 ; 8 ; 6 ; 2 ; \ldots

вы­брать бес­ко­неч­но убы­ва­ю­щую гео­мет­ри­че­скую про­грес­сию и найти сумму всех его чле­нов. Если уче­ник вы­пол­нил за­да­ние верно, то в от­ве­те он по­лу­чил.


21
Тип 21 № 7933
i

Най­ди­те x и y, если из­вест­но, что век­то­ры \vecc = левая круг­лая скоб­ка минус 2; y; минус 1 пра­вая круг­лая скоб­ка и \vecd = левая круг­лая скоб­ка 4; 5; x пра­вая круг­лая скоб­ка кол­ли­не­ар­ны. Вы­бе­ри­те про­ме­жут­ки, в ко­то­рые вхо­дят со­от­вет­ству­ю­щие зна­че­ния x и y од­но­вре­мен­но.



22
Тип 22 № 3205
i

Hеко­то­рое дву­знач­ное число раз­де­ли­ли на раз­ность его цифр. Какое вы­ра­же­ние удо­вле­тво­ря­ет дан­но­му усло­вию?



23
Тип 23 № 8153
i

Ука­жи­те про­из­ве­де­ние кор­ней урав­не­ния: x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 4 x плюс 1 пра­вая круг­лая скоб­ка = 6 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 6 16 пра­вая круг­лая скоб­ка .



24
Тип 24 № 8194
i

Ре­ши­те не­ра­вен­ство:  ко­рень из: на­ча­ло ар­гу­мен­та: 5 плюс x конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 5 минус x конец ар­гу­мен­та боль­ше 0.



25
Тип 25 № 8025
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка ,x_0=4.



26
Тип 26 № 2241
i
Развернуть

Най­ди­те сумму век­то­ров \overrightarrowAA_1 и \overrightarrowE_1D_1.



27
Тип 27 № 3936
i
Развернуть

Oпре­де­ли­те гра­дус­ную меру сек­то­ра, со­от­вет­ству­ю­ще­го объ­е­му до­бы­чи нефти су­пер­ги­ган­том «Тен­гиз­шев­ройл» на кру­го­вой диа­грам­ме (ответ округ­ли­те до целых).



28
Тип 28 № 2033
i
Развернуть

Сколь­ко нужно ис­поль­зо­вать ма­те­ри­а­ла (кро­вель­но­го же­ле­за) для по­кры­тия крыши с уче­том швов и об­ре­зок? (округ­ли­те до целых).  левая круг­лая скоб­ка Пи = 3,14 пра­вая круг­лая скоб­ка



29
Тип 29 № 2804
i
Развернуть

Торт раз­делён ше­стью диа­мет­ра­ми на ку­соч­ки рав­ной ве­ли­чи­ны. Най­ди­те массу каж­до­го ку­соч­ка, если сред­няя плот­ность торта 0,4 г/см3.



30
Тип 30 № 3758
i
Развернуть

Bычис­ли­те ве­ро­ят­ность, что из всех, по­дав­ших ре­зю­ме, тру­до­устро­ят­ся 2 эко­но­ми­ста, 3 ме­не­дже­ра и 3 про­грам­ми­ста (ответ округ­ли­те до сотых).



31
Тип 31 № 7729
i

Квад­ра­тич­ная функ­ция за­да­на урав­не­ни­ем y = минус x в квад­ра­те плюс 2x плюс 3. Уста­но­ви­те со­от­вет­ствие между ну­ля­ми функ­ции и ко­ор­ди­на­та­ми вер­ши­ны па­ра­бо­лы.

A)  Нули функ­ции

Б)  Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1)  (1; 4)

2)  {−1; 3}

3)  (−2; −1)

4)  {1; 3}


Ответ:

32

В ци­линдр впи­сан шар, ра­ди­ус ко­то­ро­го равен 6. Уста­но­ви­те со­от­вет­ствие между пло­ща­дью пол­ной по­верх­но­сти ци­лин­дра, объ­е­мом ци­лин­дра и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Пло­щадь пол­ной по­верх­но­сти ци­лин­дра

Б) Объем ци­лин­дра

1) 324π

2) 432π

3) 216π

4) 288π


Ответ:

33
Тип 33 № 7734
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка 3x минус 4 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x2, ко­эф­фи­ци­ен­том при x и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x2

Б) Ко­эф­фи­ци­ент при x

1) [20; 30)

2) (−25; −20)

3) (−10; 10)

4) [40; 42]


Ответ:

34

Даны урав­не­ния 3 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 2x пра­вая круг­лая скоб­ка = 27 и  ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та плюс 1 = x. Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем пер­во­го урав­не­ния, но не яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) −1

2) 2

3) 3

4) 1


Ответ:

35
Тип 35 № 7817
i

Вы­пи­са­ны не­сколь­ко пер­вых чле­нов гео­мет­ри­че­ской про­грес­сии: 17, 68, 272, … Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b4

Б) S4

1) 1088

2) 816

3) 1225

4) 1445


Ответ:

36
Тип 36 № 3231
i

Вы­пол­ни­те дей­ствия  левая круг­лая скоб­ка 3 ко­рень из: на­ча­ло ар­гу­мен­та: 175 конец ар­гу­мен­та минус 5 ко­рень из: на­ча­ло ар­гу­мен­та: 28 конец ар­гу­мен­та плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 63 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в квад­ра­те минус 40 умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 0,027 конец ар­гу­мен­та .



37
Тип 37 № 7785
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус 67 гра­ду­сов синус 53 гра­ду­сов минус синус 23 гра­ду­сов синус 37 гра­ду­сов .



38
Тип 38 № 3948
i

Зна­че­ние суммы пер­вых трех чле­нов воз­рас­та­ю­щей ариф­ме­ти­че­ской про­грес­сии с по­ло­жи­тель­ны­ми чле­на­ми равно 15, а зна­че­ние суммы их квад­ра­тов равно 93. Най­ди­те пятый член этой про­грес­сии.



39
Тип 39 № 8109
i

Ре­ши­те си­сте­му, со­дер­жа­щую од­но­род­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка 3x плюс 5y=2, новая стро­ка 3x в квад­ра­те плюс 10xy минус 25y в квад­ра­те =0. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x_1y_1 плюс x_2y_2.



40
Тип 40 № 3947
i

B ос­но­ва­нии пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да лежит пря­мо­уголь­ник со сто­ро­на­ми 3 и 4. Вы­со­та па­рал­ле­ле­пи­пе­да 5. Най­ди­те пло­щадь диа­го­наль­но­го се­че­ния пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да.


Завершить работу, свериться с ответами, увидеть решения.