Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 22950
1.  
i

Вы­чис­ли­те: 7 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 9 минус ло­га­рифм по ос­но­ва­нию 2 18 пра­вая круг­лая скоб­ка .

1) 1
2) 7
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 7 конец дроби
2.  
i

Зна­че­ние вы­ра­же­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: x плюс y конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка при x плюс y=2,25 равно

1) 3,5
2) −0,5
3) −1,5
4) 0,75
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 7 тан­генс 13 гра­ду­сов умно­жить на тан­генс 77 гра­ду­сов .

1) 7
2) −7
3) 14
4) −14
4.  
i

Ука­жи­те вер­ное раз­ло­же­ние на мно­жи­те­ли мно­го­чле­на ab минус a в квад­ра­те плюс 2a минус 2b

1)  левая круг­лая скоб­ка a плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка b минус a пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка a минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a минус b пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка a минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка b минус a пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка a плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a минус b пра­вая круг­лая скоб­ка
5.  
i

Ко­рень урав­не­ния y = y', при y = x в квад­ра­те плюс 1 равен?

1) 3
2) 4
3) 2
4) 1
6.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний x минус 5y = минус 21, x плюс y = минус 9. конец си­сте­мы .

1) (−11; 2)
2) (−7; 3)
3) (11; −2)
4) (−10; 1)
7.  
i

Най­ди­те  при­над­ле­жит t левая круг­лая скоб­ка e в сте­пе­ни x плюс 3 в сте­пе­ни x плюс 2 пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 3 в сте­пе­ни x , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс 2x плюс C
2) e в сте­пе­ни x плюс дробь: чис­ли­тель: 3 в сте­пе­ни x , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс x плюс C
3) e в сте­пе­ни x плюс дробь: чис­ли­тель: 3 в сте­пе­ни x , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс 2x плюс C
4) e в сте­пе­ни x плюс дробь: чис­ли­тель: 3 в сте­пе­ни x , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс C
8.  
i

Опре­де­ли­те длину диа­го­на­ли осе­во­го се­че­ния ци­лин­дра с ра­ди­у­сом 5 см и вы­со­той 24 см.

1) 32 см
2) 26 см
3) 30 см
4) 27 см
9.  
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 2 минус x, зна­ме­на­тель: x плюс 1 конец дроби минус 1 боль­ше или равно 0, дробь: чис­ли­тель: 2 минус x, зна­ме­на­тель: x плюс 1 конец дроби минус 2 мень­ше или равно 0. конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка 0; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка минус 1; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка 0; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус 1; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
10.  
i

Ре­ши­те урав­не­ние  ко­си­нус левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1)  \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби Пи k,k при­над­ле­жит Z
2)  левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка в сте­пе­ни k Пи плюс 3 Пи k,k при­над­ле­жит Z
3)  \pm Пи плюс 6 Пи k,k при­над­ле­жит Z
4)  левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка в сте­пе­ни k дробь: чис­ли­тель: Пи , зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби Пи k,k при­над­ле­жит Z
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =7x в кубе минус x плюс 3, про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 1;6 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 7, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус 3x плюс дробь: чис­ли­тель: 31, зна­ме­на­тель: 4 конец дроби
2)  дробь: чис­ли­тель: 7, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: 2 конец дроби плюс 3x
3)  дробь: чис­ли­тель: 7, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: 2 конец дроби плюс 3x плюс дробь: чис­ли­тель: 31, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 7, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: 2 конец дроби плюс 3x плюс дробь: чис­ли­тель: 31, зна­ме­на­тель: 4 конец дроби
12.  
i

Ре­ши­те не­ра­вен­ство 2 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс 3 боль­ше x.

1)  левая круг­лая скоб­ка минус 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус 0,5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая круг­лая скоб­ка
13.  
i

Окруж­ность, впи­сан­ная в рав­но­бед­рен­ный тре­уголь­ник, делит в точке ка­са­ния одну из бо­ко­вых сто­рон на два от­рез­ка (как по­ка­за­но на ри­сун­ке), длины ко­то­рых равны 14 и 3, счи­тая от вер­ши­ны. Най­ди­те пе­ри­метр тре­уголь­ни­ка.

1) 10
2) 50
3) 20
4) 40
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от минус 2 до 3, ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 2 конец ар­гу­мен­та dx.

1)  дробь: чис­ли­тель: 2 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: 2 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 7 конец дроби
3)  дробь: чис­ли­тель: 2 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 50, зна­ме­на­тель: 3 конец дроби
15.  
i

Най­ди­те диа­го­наль пря­мо­уголь­ной приз­мы, в ос­но­ва­нии ко­то­рой лежит пря­мо­уголь­ник со сто­ро­на­ми 8 см и 4 ко­рень из 5 см и бо­ко­вое ребро приз­мы 5 см.

1) 15 см
2) 11 см
3) 14 см
4) 13 см
16.  
i

Ука­жи­те корни урав­не­ния:  левая круг­лая скоб­ка x в квад­ра­те минус 4 пра­вая круг­лая скоб­ка умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та = 0.

1) 1; 3
2) 0; 2
3) 3; 2
4) 2; 1
17.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка 2x плюс y в квад­ра­те пра­вая круг­лая скоб­ка =1,2 в сте­пе­ни левая круг­лая скоб­ка x плюс y в квад­ра­те пра­вая круг­лая скоб­ка минус 4=0. конец си­сте­мы .

1) ре­ше­ний нет
2) (1; −2)
3) (−1; 1), (1; 1)
4) (1; −1), (1; 1)
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс 2x,y=x плюс 2.

1)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 31, зна­ме­на­тель: 6 конец дроби
19.  
i

На­клон­ная крыша уста­нов­ле­на на трёх вер­ти­каль­ных опо­рах, рас­по­ло­жен­ных на одной пря­мой. Сред­няя опора стоит по­се­ре­ди­не между малой и боль­шой опо­ра­ми (см. рис.). Вы­со­та малой опоры 1,8 м, вы­со­та боль­шой опоры 2,8 м. Най­ди­те вы­со­ту сред­ней опоры.

1) 1,8
2) 2,8
3) 2,3
4) 2,5
20.  
i

Ариф­ме­ти­че­ская про­грес­сия 5, 8, 11... и гео­мет­ри­че­ская про­грес­сия 4, 8, 16... имеют по 50 чле­нов. Сколь­ко оди­на­ко­вых чле­нов в обеих про­грес­си­ях?

1) 2
2) 1
3) 3
4) 4
21.  
i

На ри­сун­ке изоб­ражён пря­мо­уголь­ник ABCD, диа­го­на­ли ко­то­ро­го пе­ре­се­ка­ют­ся в точке O. Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров: а) \overrightarrowAD умно­жить на \overrightarrowAB, б) \overrightarrowAO умно­жить на \overrightarrowBO, если AB  =  12, BC  =  5.

1) а) 0; б)  минус дробь: чис­ли­тель: 119, зна­ме­на­тель: 4 конец дроби
2) а) 1; б)  минус дробь: чис­ли­тель: 119, зна­ме­на­тель: 4 конец дроби
3) а) 0; б)  минус дробь: чис­ли­тель: 117, зна­ме­на­тель: 4 конец дроби
4) а) 0; б)  минус дробь: чис­ли­тель: 119, зна­ме­на­тель: 2 конец дроби
22.  
i

Зна­че­ние част­но­го

 дробь: чис­ли­тель: a в квад­ра­те плюс a минус 6, зна­ме­на­тель: 2 a в квад­ра­те плюс 5 a минус 3 конец дроби : дробь: чис­ли­тель: 3 a в квад­ра­те минус 5 a минус 2, зна­ме­на­тель: 2 a в квад­ра­те плюс a минус 1 конец дроби

равно

1)  дробь: чис­ли­тель: a плюс 1, зна­ме­на­тель: 3a плюс 1 конец дроби
2)  дробь: чис­ли­тель: 3a плюс 1, зна­ме­на­тель: a минус 1 конец дроби
3)  дробь: чис­ли­тель: 3a плюс 1, зна­ме­на­тель: a плюс 1 конец дроби
4)  дробь: чис­ли­тель: a минус 1, зна­ме­на­тель: 3a плюс 1 конец дроби
23.  
i

Пусть x0  — наи­боль­ший ко­рень урав­не­ния \log в квад­ра­те _9 левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 81 конец дроби пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 9 x минус 22=0, тогда зна­че­ние вы­ра­же­ния 3 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x_0 конец ар­гу­мен­та равно ...

1) 9
2) 81
3) 169
4) 243
24.  
i

Ре­ши­те не­ра­вен­ство \log _0,5 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка боль­ше 2.

1)  левая круг­лая скоб­ка 1;1,25 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 1,25; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 1;4 пра­вая круг­лая скоб­ка
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 синус x минус \operatorname\ctgx,x_0= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби .

1) y = левая круг­лая скоб­ка 2 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та плюс 2 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 1
2) y = 2x минус дробь: чис­ли­тель: Пи левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та плюс 2 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 конец дроби плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 1
3) y = левая круг­лая скоб­ка 2 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та плюс 2 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 конец дроби плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4) y = левая круг­лая скоб­ка 2 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та плюс 2 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 конец дроби плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 1
26.  
i

Пи­ра­мид­ка — это вто­рая по по­пу­ляр­но­сти ме­ха­ни­че­ская го­ло­во­лом­ка в мире. Она имеет вид тет­ра­эд­ра, у ко­то­ро­го грани раз­де­ле­ны на 9 рав­но­сто­рон­них тре­уголь­ни­ков со сто­ро­ной 3 см. Все грани Пи­ра­мид­ки раз­но­го цвета. Меф­ферт изоб­рел Пи­ра­мид­ку в 1971 г — почти на 10 лет рань­ше, чем Эрно Рубик при­ду­мал свой зна­ме­ни­тый кубик. Но толь­ко после успе­ха ку­би­ка Ру­би­ка Меф­ферт решил за­па­тен­то­вать свое изоб­ре­те­ние. Эле­мен­ты пи­ра­мид­ки Меф­фер­та: А — «угол­ки» (имеют 3 цвет­ные грани), В — «ребра» (имеют 2 цвет­ные грани), С — «ра­ди­а­то­ры» (имеют 1 цвет­ную грань).

A

B

C

Най­ди­те пло­щадь по­верх­но­сти всех «угол­ков»

1)  дробь: чис­ли­тель: 27 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби см2
2)  дробь: чис­ли­тель: 27 ко­рень из 3 , зна­ме­на­тель: 4 конец дроби см2
3)  дробь: чис­ли­тель: 27 ко­рень из 3 , зна­ме­на­тель: 8 конец дроби см2
4) 27 ко­рень из 3 см2
27.  
i

Самат стро­ит дач­ный домик формы пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с раз­ме­ра­ми 6 м х 4 м и вы­со­той 3 м. Для этого он за­ку­пил сте­но­вые па­не­ли «Сэнд­вич» раз­ме­ра­ми 3 м х 1 м, и двер­ное по­лот­но с раз­ме­ра­ми 2,1 м х 1 м, окон­ные блоки раз­ме­ра­ми 1,8 м х 1,2 м.

Каков объем дач­но­го до­ми­ка? Ответ при­ве­ди­те в ку­би­че­ских мет­рах.

1) 24
2) 18
3) 12
4) 72
28.  
i

Самат стро­ит дач­ный домик формы пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с раз­ме­ра­ми 6 м х 4 м и вы­со­той 3 м. Для этого он за­ку­пил сте­но­вые па­не­ли «Сэнд­вич» раз­ме­ра­ми 3 м х 1 м, и двер­ное по­лот­но с раз­ме­ра­ми 2,1 м х 1 м, окон­ные блоки раз­ме­ра­ми 1,8 м х 1,2 м.

Най­ди­те ко­ли­че­ство сте­но­вых па­не­лей, ко­то­рое по­тре­бу­ет­ся для стро­и­тель­ства до­ми­ка без учета от­хо­дов, если па­не­ли не раз­ре­зать.

1) 30
2) 25
3) 40
4) 20
29.  
i

Гра­нит­ный по­ста­мент для уста­нов­ки ме­мо­ри­аль­ной плиты имеет форму пра­виль­ной усе­чен­ной пи­ра­ми­ды, верх­няя пло­щад­ка — квад­рат сто­ро­ной 2 метра, сто­ро­на ниж­не­го ос­но­ва­ния 10 мет­ров, его вы­со­та 7 мет­ров.

Най­ди­те массу под­став­ки, если удель­ная плот­ность гра­ни­та 2,5 г/см3. Ответ вы­ра­зить в кг.

1) 722300 кг
2) 722500 кг
3) 722250 кг
4) 722350 кг
30.  
i

Самат стро­ит дач­ный домик формы пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с раз­ме­ра­ми 6 м х 4 м и вы­со­той 3 м. Для этого он за­ку­пил сте­но­вые па­не­ли «Сэнд­вич» раз­ме­ра­ми 3 м х 1 м, и двер­ное по­лот­но с раз­ме­ра­ми 2,1 м х 1 м, окон­ные блоки раз­ме­ра­ми 1,8 м х 1,2 м.

Рас­счи­тай­те наи­мень­шую пло­щадь от­хо­дов от сте­но­вых па­не­лей, остав­ших­ся после стро­и­тель­ства в квад­рат­ных мет­рах, с уче­том двух окон и двери.

1) 4,26 м2
2) 6,42 м2
3) 4,32 м2
4) 8,65 м2
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = 4 ко­си­нус x плюс 2. Уста­но­ви­те со­от­вет­ствие между наи­боль­шим и наи­мень­шим зна­че­ни­я­ми функ­ции и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Наи­боль­шее зна­че­ние функ­ции

Б) Наи­мень­шее зна­че­ние функ­ции

1) 1

2) 3

3) −2

4) 6

32.  
i

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 21 и 39, а вы­со­та равна 40. Уста­но­ви­те со­от­вет­ствие между дли­ной бо­ко­вой сто­ро­ны тра­пе­ции, ра­ди­у­сом окруж­но­сти, опи­сан­ной около нее и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их чис­ло­вые зна­че­ния.

A) Бо­ко­вая сто­ро­на тра­пе­ции

Б) Ра­ди­ус опи­сан­ной окруж­но­сти

1) (24; 27]

2) [12; 18]

3) [6; 9)

4) (36; 42)

33.  
i

Най­ди­те два числа x и y, x > y, если из­вест­но, что про­из­ве­де­ние кубов этих чисел равно −8, а сумма кубов этих чисел равна −7.

A) Число x при­над­ле­жит про­ме­жут­ку

Б) Число y при­над­ле­жит про­ме­жут­ку

1) (−3; 0)

2) (2; 4)

3) (5; 6]

4) [1; 2]

34.  
i

Даны урав­не­ния x в квад­ра­те плюс 4 = x левая круг­лая скоб­ка 2x минус 3 пра­вая круг­лая скоб­ка и  левая круг­лая скоб­ка x в квад­ра­те плюс 4x пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x минус 3 конец ар­гу­мен­та = 0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) −1, 3, 4

2) 2, 1, 0

3) 5, −1, 4

4) 4, 1, 8

35.  
i

В ариф­ме­ти­че­ской про­грес­сии (an) вто­рой член равен 18, а раз­ность про­грес­сии d  =  2,4. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) a1

Б) S7

1) 15,6

2) 159,6

3) 13,2

4) 142,8

36.  
i

Зна­че­ние вы­ра­же­ния  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка де­ся­тич­ный ло­га­рифм ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка де­ся­тич­ный ло­га­рифм ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка равно

1) 2 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  минус 0,5
4) 0,2
5)  левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
6) 0,5
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус 120 гра­ду­сов ко­си­нус 315 гра­ду­сов тан­генс 150 гра­ду­сов \ctg300 гра­ду­сов .

1)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , зна­ме­на­тель: 12 конец дроби
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , зна­ме­на­тель: 6 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби
4)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , зна­ме­на­тель: 12 конец дроби
5)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби
6)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , зна­ме­на­тель: 18 конец дроби
38.  
i

Сумма трех чисел, со­став­ля­ю­щих ариф­ме­ти­че­скую про­грес­сию, у ко­то­рой раз­ность боль­ше нуля, равна 18. Если к этим чис­лам при­ба­вить со­от­вет­ствен­но 4, 2 и 18, то по­лу­чен­ные числа со­став­ля­ют пер­вые три члена гео­мет­ри­че­ской про­грес­сии. Най­ди­те эти три числа.

1) −2
2) 6
3) 8
4) 14
5) 10
6) 4
39.  
i

Ре­ши­те си­сте­му

 си­сте­ма вы­ра­же­ний новая стро­ка 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка y плюс 1 пра­вая круг­лая скоб­ка =375, новая стро­ка 3 в сте­пе­ни левая круг­лая скоб­ка y минус 1 пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =15. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби конец ар­гу­мен­та
4) 2
5) 1
6) 0
40.  
i

В сфере, пло­щадь по­верх­но­сти ко­то­рой равна 3468 см2 (π ≈ 3), на рас­сто­я­нии OO1 от ее цен­тра про­ве­де­но се­че­ние. Вы­бе­ри­те из пред­став­лен­ных чисел те, ко­то­рые яв­ля­ют­ся де­ли­те­ля­ми зна­че­ния пло­ща­ди про­ве­ден­но­го се­че­ния.

1) 17
2) 5
3) 35
4) 25
5) 27
6) 55