Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 20375
1.  
i

Вы­чис­ли­те: 7 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 9 минус ло­га­рифм по ос­но­ва­нию 2 18 пра­вая круг­лая скоб­ка .

1) 1
2) 7
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 7 конец дроби
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка 2x плюс 3y пра­вая круг­лая скоб­ка в квад­ра­те минус 3x левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби x плюс 4y пра­вая круг­лая скоб­ка при x= минус 1,038, y= ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

1) 27
2) 18
3) 9
4) 36
3.  
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: ко­си­нус 42 гра­ду­сов плюс синус в квад­ра­те 21 гра­ду­сов , зна­ме­на­тель: ко­си­нус в квад­ра­те 21 гра­ду­сов конец дроби плюс 1.

1)  ко­си­нус 21 гра­ду­сов
2) 2
3)  синус 42 гра­ду­сов
4) 0
4.  
i

За­ме­ни­те знак * од­но­чле­ном, так чтобы по­лу­чен­ный трёхчлен 6,25 q в квад­ра­те минус 15 q g плюс * можно было пред­ста­вить в виде квад­ра­та дву­чле­на

1) 9g2
2) 5g2
3) 9g
4) 3g2
5.  
i

Ре­ши­те урав­не­ние:  дробь: чис­ли­тель: 9, зна­ме­на­тель: 10 конец дроби y минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1) 3
2) 2
3) 0
4) 1
6.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 3x_0 минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби y_0, где (x0; y0) — ре­ше­ние си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x в квад­ра­те плюс 2y в квад­ра­те = 1,x минус y в квад­ра­те = 1. конец си­сте­мы .

1) 0
2) 3
3) −3
4) 10
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус 4 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс 5 в сте­пе­ни левая круг­лая скоб­ка 5x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.

1)  минус дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 5 конец дроби плюс дробь: чис­ли­тель: 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс дробь: чис­ли­тель: 5 в сте­пе­ни левая круг­лая скоб­ка 5x минус 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 5 конец дроби плюс C
2)  минус дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 2 конец дроби плюс дробь: чис­ли­тель: 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс дробь: чис­ли­тель: 5 в сте­пе­ни левая круг­лая скоб­ка 5x минус 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 5 конец дроби плюс C
3)  минус дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 2 конец дроби минус дробь: чис­ли­тель: 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби минус дробь: чис­ли­тель: 5 в сте­пе­ни левая круг­лая скоб­ка 5x минус 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 5 конец дроби плюс C
4)  минус дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 2 конец дроби плюс дробь: чис­ли­тель: 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс дробь: чис­ли­тель: 3125 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 5 конец дроби плюс C
8.  
i

Пусть O и O1  — цен­тры ос­но­ва­ний ци­лин­дра, изоб­ра­жен­но­го на ри­сун­ке. Тогда об­ра­зу­ю­щей ци­лин­дра яв­ля­ет­ся от­ре­зок:

1) DB
2) DC
3) OO1
4) AD
9.  
i

Най­ди­те наи­боль­шее целое ре­ше­ние си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний |x плюс 3| мень­ше 10, дробь: чис­ли­тель: x в квад­ра­те минус 7x плюс 6, зна­ме­на­тель: x в квад­ра­те минус 6 конец дроби боль­ше 1. конец си­сте­мы .

1) 7
2) 6
3) 2
4) 5
10.  
i

Ре­ши­те урав­не­ние:  синус 3x ко­си­нус 3x = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 3 конец дроби , k при­над­ле­жит Z
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 3 конец дроби , k при­над­ле­жит Z
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 6 конец дроби , k при­над­ле­жит Z
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 3 конец дроби , k при­над­ле­жит Z
11.  
i

Най­ди­те зна­че­ние про­из­вод­ной функ­ции y = x в квад­ра­те плюс ко­рень из: на­ча­ло ар­гу­мен­та: 6x плюс 3 конец ар­гу­мен­та плюс ко­рень из 3 в точке x0  =  1.

1) 3
2) 0
3) 2
4) 1
12.  
i

Pешите не­ра­вен­ство: 7 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 4x боль­ше 3x плюс 16.

1) нет ре­ше­ний
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка минус 4; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 16 пра­вая квад­рат­ная скоб­ка
13.  
i

Пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка с ка­те­та­ми 6 и 9 равна?

1) 48
2) 27
3) 54
4) 33
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от минус 2 до 3, ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 2 конец ар­гу­мен­та dx.

1)  дробь: чис­ли­тель: 2 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: 2 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 7 конец дроби
3)  дробь: чис­ли­тель: 2 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 50, зна­ме­на­тель: 3 конец дроби
15.  
i

В ос­но­ва­нии тре­уголь­ной пи­ра­ми­ды лежит тре­уголь­ник АВС, АВ = ВС = 10 см, АС = 12 см. Вы­со­та пи­ра­ми­ды равна 5 см. Объем пи­ра­ми­ды равен?

1) 72 см3
2) 40 см3
3) 86 см3
4) 80 см3
16.  
i

Ре­ши­те урав­не­ние 2 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка минус x минус 1 пра­вая круг­лая скоб­ка =1.

1) 1
2) −2
3) −1
4) 0
17.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 2 x плюс ло­га­рифм по ос­но­ва­нию 2 y=4, x плюс 2y=6. конец си­сте­мы .

1) (2; 3), (6; 1)
2) (4; 1), (2; 2)
3) (2; 2)
4) (1; 3), (2; 1)
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс 3,y=3, минус 2 мень­ше или равно x мень­ше или равно 4.

1) 14
2) 28
3) 18
4) 24
19.  
i

Най­ди­те ко­ли­че­ство сто­рон мно­го­уголь­ни­ка, если каж­дый его угол равен 170 гра­ду­сов.

1) 32
2) 40
3) 24
4) 36
20.  
i

Ука­жи­те фор­му­лу n-го члена по­сле­до­ва­тель­но­сти: 3; 8; 13; 18; 23 …

1) 6n – 1
2) 5n + 3
3) 4n – 1
4) 5n – 2
21.  
i

Най­ди­те ко­ор­ди­на­ты век­то­ра \veca, если \veca=3\veci минус 2\vecp,\veci= левая круг­лая скоб­ка 3; минус 2 пра­вая круг­лая скоб­ка ,\vecp= левая круг­лая скоб­ка минус 4;1 пра­вая круг­лая скоб­ка .

1) (10; −2)
2) (13; −8)
3) (17; −8)
4) (18; −6)
22.  
i

Упро­сти­те вы­ра­же­ние:  левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 12 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 1,2 пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1,5 пра­вая круг­лая скоб­ка .

1) 1
2) x в квад­ра­те
3) x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби
23.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те = ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка 3x плюс 7 пра­вая круг­лая скоб­ка .

1) −6
2) 6
3) −1
4) 1
24.  
i

Ре­ши­те не­ра­вен­ство \log _ дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби левая круг­лая скоб­ка x в квад­ра­те плюс 3x плюс 4 пра­вая круг­лая скоб­ка боль­ше или равно минус 1.

1) [−2; −1]
2) (−2; −1)
3)  левая квад­рат­ная скоб­ка минус 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
25.  
i

На­пи­ши­те урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в квад­ра­те минус x минус 12 в точке x0  =  5.

1) y = 6x минус 37
2) y = 9x минус 37
3) y = 9x минус 34
4) y = 9x минус 38
26.  
i

Дет­ское ве­дер­ко имеет форму усе­чен­но­го ко­ну­са с диа­мет­ра­ми ос­но­ва­нии 10 см и 34 см (ниж­нее ос­но­ва­ние мень­ше верх­не­го), об­ра­зу­ю­щей 13 см.

Если  Пи = 3, то пло­щадь ниж­не­го ос­но­ва­ния равна

1) 720 см2
2) 432 см2
3) 75 см2
4) 48 см2
27.  
i

Дет­ское ве­дер­ко имеет форму усе­чен­но­го ко­ну­са с диа­мет­ра­ми ос­но­ва­нии 10 см и 34 см (ниж­нее ос­но­ва­ние мень­ше верх­не­го), об­ра­зу­ю­щей 13 см.

Во сколь­ко раз ра­ди­ус верх­не­го ос­но­ва­ния боль­ше, чем ра­ди­ус ниж­не­го ос­но­ва­ния

1) в 3,2 раза
2) в 2,9 раза
3) в 3,8 раза
4) в 3,4 раза
28.  
i

Дет­ское ве­дер­ко имеет форму усе­чен­но­го ко­ну­са с диа­мет­ра­ми ос­но­ва­нии 10 см и 34 см (ниж­нее ос­но­ва­ние мень­ше верх­не­го), об­ра­зу­ю­щей 13 см.

Вы­со­та ве­дер­ка равна

1) 5 см
2) 2 см
3) 4 см
4) 3 см
29.  
i

Пер­вый этаж дома со­сто­ит из ком­на­ты и ко­ри­до­ра пря­мо­уголь­ной формы, а также из кухни и ван­ной ком­на­ты квад­рат­ной формы. Вы­со­та по­тол­ков со­став­ля­ет 2,5 м.

Для по­куп­ки гир­лянд в ма­га­зи­не тре­бу­ет­ся вы­брать самый оп­ти­маль­ный ва­ри­ант.

1) Упа­ков­ка гир­лян­ды дли­ной 12 м за 1300 тенге за штуку
2) Упа­ков­ка гир­лян­ды дли­ной 10 м за 1200 тенге за штуку
3) Упа­ков­ка гир­лян­ды дли­ной 5 м за 500 тенге за штуку
4) Упа­ков­ка гир­лян­ды дли­ной 13 м за 1400 тенге за штуку
30.  
i

Дет­ское ве­дер­ко имеет форму усе­чен­но­го ко­ну­са с диа­мет­ра­ми ос­но­ва­нии 10 см и 34 см (ниж­нее ос­но­ва­ние мень­ше верх­не­го), об­ра­зу­ю­щей 13 см.

Опре­де­ли­те, сколь­ко нужно крас­ки для по­кры­тия внеш­ней по­верх­но­сти ве­дер­ки (вклю­чая дно), если на 1 дм2 рас­хо­ду­ет­ся 150 г крас­ки  левая круг­лая скоб­ка Пи \approx 3 пра­вая круг­лая скоб­ка .

1) 1399,5 г
2) 1562,4 г
3) 1765,5 г
4) 1865,4 г
31.  
i

За­да­на функ­ция y=2 ко­си­нус x минус 1. Уста­но­ви­те со­от­вет­ствие между наи­боль­шим и наи­мень­шим зна­че­ни­ем функ­ции и его чис­ло­вым зна­че­ни­ем.

A) Наи­боль­шее зна­че­ние функ­ции

Б) Наи­мень­шее зна­че­ние функ­ции

1) 2

2) 1

3) −3

4) −1

32.  
i

Даны две сферы: с цен­тром в точке O, ра­ди­у­сом R  =  6 и с цен­тром в точке P, ра­ди­у­сом r  =  2. Сферы рас­по­ло­же­ны так что центр каж­дой сферы лежит вне дру­гой сферы. Уста­но­ви­те со­от­вет­ствие между при­ве­ден­ны­ми ниже дан­ны­ми.

A) Сферы ка­са­ют­ся при

Б) Сферы пе­ре­се­ка­ют­ся при

1) OP  =  7

2) OP  =  8

3) OP  =  9

4) OP  =  10

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в кубе . Уста­но­ви­те со­от­вет­ствие между ко­эф­фи­ци­ен­том при x в пер­вой сте­пе­ни и сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и про­ме­жут­ком, на ко­то­ром они верны.

A) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

Б) Ко­эф­фи­ци­ен­том при x в пер­вой сте­пе­ни

1) (10; 20)

2) (20; 30)

3) (30; 40)

4) (40; 50)

34.  
i

Даны урав­не­ния  дробь: чис­ли­тель: x в квад­ра­те минус 6x плюс 5, зна­ме­на­тель: x минус 1 конец дроби = 0 и  левая круг­лая скоб­ка x в квад­ра­те минус 4 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та = 0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 0, 3, 4

2) 5, 2, 8

3) −1, 0, 3

4) 5, 1, 2

35.  
i

Ариф­ме­ти­че­ская про­грес­сия (an) за­да­на фор­му­лой a_n=3n минус 2. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) a6 − a4

Б) S5

1) 25

2) 35

3) 3

4) 6

36.  
i

Опре­де­ли­те, каким про­ме­жут­кам при­над­ле­жит зна­че­ние вы­ра­же­ния 2 ко­рень из x плюс 1, x = ло­га­рифм по ос­но­ва­нию 5 625.

1) (1; 7)
2) (−5; 1)
3) (1; 3)
4) (4; 10)
5) (3; 8)
6) (0; 4)
37.  
i

Зна­че­ние вы­ра­же­ния 2 ко­си­нус в квад­ра­те x плюс 2 синус в квад­ра­те x левая круг­лая скоб­ка 1 плюс тан­генс в квад­ра­те x пра­вая круг­лая скоб­ка умно­жить на ко­си­нус в квад­ра­те x плюс 4 равно

1) 5
2) 6
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та
4) 8
5) 7
6) 0
38.  
i

Сумма пер­во­го, чет­вер­то­го и три­на­дца­то­го чле­нов ариф­ме­ти­че­ской про­грес­сии равна –23. Най­ди­те ше­стой ее член и сумму пер­вых 11 чле­нов.

1)  минус дробь: чис­ли­тель: 187, зна­ме­на­тель: 3 конец дроби
2)  минус дробь: чис­ли­тель: 263, зна­ме­на­тель: 3 конец дроби
3)  минус дробь: чис­ли­тель: 230, зна­ме­на­тель: 3 конец дроби
4)  минус дробь: чис­ли­тель: 23, зна­ме­на­тель: 3 конец дроби
5)  дробь: чис­ли­тель: 26, зна­ме­на­тель: 3 конец дроби
6)  минус дробь: чис­ли­тель: 253, зна­ме­на­тель: 3 конец дроби
39.  
i

Ре­ши­те си­сте­му ра­ци­о­наль­ных урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: x минус y конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x плюс y конец дроби =1, новая стро­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: x плюс y конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус y конец дроби =4. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния 2x плюс 3y.

1) 2
2)  ко­рень из 9
3) 3
4)  ко­рень из 4
5) −2
6) 5
40.  
i

Сто­ро­ны ос­но­ва­ний пра­виль­ной усе­чен­ной тре­уголь­ной пи­ра­ми­ды 4 дм и 12 дм. Бо­ко­вая грань об­ра­зу­ет с боль­шим ос­но­ва­ни­ем угол 60°. Най­ди­те вы­со­ту.

1) 5 дм
2) 4 дм
3) 3 дм
4) 7 дм