Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 20373
1.  
i

Пред­ставь­те бес­ко­неч­ную де­ся­тич­ную пе­ри­о­ди­че­скую дробь 0,(03) в виде обык­но­вен­ной дроби.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби
2)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 29 конец дроби
3)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 27 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 33 конец дроби
2.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: a в сте­пе­ни левая круг­лая скоб­ка минус 11 пра­вая круг­лая скоб­ка умно­жить на a в сте­пе­ни 4 , зна­ме­на­тель: a в сте­пе­ни левая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка конец дроби   и най­ди­те его зна­че­ние при a= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби . В от­ве­те за­пи­ши­те по­лу­чен­ное число.

1) 16
2) 8
3) 2
4) 4
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния: 12 синус 150 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка умно­жить на ко­си­нус 120 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка .

1) −12
2) −3
3) 6
4) 3
4.  
i

Пре­об­ра­зуй­те вы­ра­же­ние 4x в квад­ра­те минус 4x плюс 2, вы­де­лив пол­ный квад­рат.

1)  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те минус 1
2)  левая круг­лая скоб­ка 2x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те минус 1
3)  левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те плюс 1
4)  левая круг­лая скоб­ка 2x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те плюс 1
5.  
i

Ре­ши­те урав­не­ние: 2 левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка =1 минус 3 x .

1) 6
2) 5
3) 0
4) −1
6.  
i

Ре­ши­те си­сте­му урав­не­ний  си­сте­ма вы­ра­же­ний 3x минус 2y = 4,5x плюс 2y = 20 конец си­сте­мы .

1)  левая круг­лая скоб­ка минус 3; минус 2,5 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 2,5; 3 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 3; 2,5 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 3; минус 2,5 пра­вая круг­лая скоб­ка
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 4x минус 2 пра­вая круг­лая скоб­ка минус 2 в сте­пе­ни левая круг­лая скоб­ка 3x минус 4 пра­вая круг­лая скоб­ка минус 5 в сте­пе­ни левая круг­лая скоб­ка 1 минус 5x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 минус 4x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 на­ту­раль­ный ло­га­рифм дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби конец дроби минус дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка 3x минус 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 на­ту­раль­ный ло­га­рифм 2 конец дроби плюс дробь: чис­ли­тель: 5 в сте­пе­ни левая круг­лая скоб­ка минус 5x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 5 конец дроби плюс C
2)  дробь: чис­ли­тель: левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 минус 4x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 на­ту­раль­ный ло­га­рифм дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби конец дроби минус дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка 3x минус 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 2 конец дроби плюс дробь: чис­ли­тель: 5 в сте­пе­ни левая круг­лая скоб­ка минус 5x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 5 конец дроби плюс C
3)  дробь: чис­ли­тель: левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 минус 4x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 на­ту­раль­ный ло­га­рифм дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби конец дроби плюс дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка 3x минус 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 на­ту­раль­ный ло­га­рифм 2 конец дроби плюс дробь: чис­ли­тель: 5 в сте­пе­ни левая круг­лая скоб­ка минус 5x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 5 конец дроби плюс C
4)  дробь: чис­ли­тель: левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 минус 4x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 на­ту­раль­ный ло­га­рифм дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби конец дроби плюс дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка 3x минус 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 на­ту­раль­ный ло­га­рифм 2 конец дроби плюс дробь: чис­ли­тель: 5 в сте­пе­ни левая круг­лая скоб­ка минус 5x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс C
8.  
i

Се­ку­щая плос­кость пе­ре­се­ка­ет сферу по окруж­но­сти, ра­ди­ус ко­то­рой равен 2. Если рас­сто­я­ние от цен­тра сферы до се­ку­щей плос­ко­сти равно 4, то пло­щадь сферы равна:

1) 40 Пи
2) 20 Пи
3) 160 Пи
4) 80 Пи
9.  
i

Най­ди­те ре­ше­ние си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 4, зна­ме­на­тель: x конец дроби минус дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби боль­ше или равно 0, дробь: чис­ли­тель: 3 минус 2x, зна­ме­на­тель: x минус 2 конец дроби боль­ше 1. конец си­сте­мы .

1) (2;  4)
2) [1; 2]
3)  левая квад­рат­ная скоб­ка целая часть: 1, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3 ; 2 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка целая часть: 1, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3 ; 2 пра­вая круг­лая скоб­ка
10.  
i

Ре­ши­те урав­не­ние:  арк­си­нус x = ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби

1)  дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
3)  синус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =e в сте­пе­ни левая круг­лая скоб­ка 7x плюс 6 пра­вая круг­лая скоб­ка плюс 6e в сте­пе­ни левая круг­лая скоб­ка 7x плюс 4 пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка 0;3 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка 7x плюс 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 7 конец дроби плюс дробь: чис­ли­тель: 6, зна­ме­на­тель: 7 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 7x плюс 4 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 6, зна­ме­на­тель: 7 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 7 конец дроби
2)  дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка 7x плюс 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 7 конец дроби плюс e в сте­пе­ни левая круг­лая скоб­ка 7x плюс 4 пра­вая круг­лая скоб­ка плюс 3 минус дробь: чис­ли­тель: 6, зна­ме­на­тель: 7 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 7 конец дроби
3)  дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка 7x плюс 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 7 конец дроби плюс дробь: чис­ли­тель: 6, зна­ме­на­тель: 7 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 7x плюс 4 пра­вая круг­лая скоб­ка плюс 3 минус дробь: чис­ли­тель: 6, зна­ме­на­тель: 7 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 7 конец дроби
4)  дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка 7x плюс 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 7 конец дроби минус e в сте­пе­ни левая круг­лая скоб­ка 7x плюс 4 пра­вая круг­лая скоб­ка минус e в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 7 конец дроби
12.  
i

Ре­ши­те не­ра­вен­ство: x в кубе минус 5x в квад­ра­те плюс 4x боль­ше или равно 0.

1)  левая квад­рат­ная скоб­ка 0 ; 1 пра­вая квад­рат­ная скоб­ка \cup левая круг­лая скоб­ка 4 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 0 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 1 ; 4 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка 0 ; 1 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 4 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 0 ; 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 4 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
13.  
i

Сред­няя линия MN, па­рал­лель­ная сто­ро­не AC, равна по­ло­ви­не сто­ро­ны AB. Най­ди­те угол ABC, если угол BMN равен 70 гра­ду­сов .

1) 35°
2) 70°
3) 110°
4) 55°
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 1 до 5, ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та левая круг­лая скоб­ка 3 плюс дробь: чис­ли­тель: 8, зна­ме­на­тель: x конец дроби пра­вая круг­лая скоб­ка dx.

1) 26 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 12
2) 26 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 18
3) 27 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 18
4) 24 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 16
15.  
i

Из точки, не при­над­ле­жа­щей плос­ко­сти, про­ве­де­ны две на­клон­ные, ко­то­рые об­ра­зу­ют с плос­ко­стью углы рав­ные 30° и 60°. Сумма длин про­ек­ций этих на­клон­ных на плос­кость равна 8. Опре­де­ли­те длину мень­шей на­клон­ной.

1) 6
2) 4
3) 3
4) 5
16.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния 4 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка плюс 128=3 в сте­пе­ни левая круг­лая скоб­ка 1 минус x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 12 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка .

1) −4
2) −3
3)  минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4) 3
17.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка 2x минус 1 пра­вая круг­лая скоб­ка плюс 3 в сте­пе­ни левая круг­лая скоб­ка 2x минус 2 пра­вая круг­лая скоб­ка боль­ше 4,3x минус 10 мень­ше или равно 2. конец си­сте­мы .

1) (1; 2)
2) [0; 2]
3) [1; 2]
4) (1; 4]
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мы­ми y=5x минус 7, y= минус 3x плюс 6, x = минус 1, x = 2.

1) 29
2) 28,125
3) 28,5
4) 28,25
19.  
i

Точка пе­ре­се­че­ния бис­сек­трис двух углов па­рал­ле­ло­грам­ма, при-ле­жа­щих к одной сто­ро­не, при­над­ле­жит про­ти­во­по­лож­ной сто­ро­не. Мень­шая сто­ро­на па­рал­ле­ло­грам­ма равна 5. Най­ди­те его боль­шую сто­ро­ну.

1) 10
2) 5
3) 12
4) 20
20.  
i

Сумма пер­вых трех чле­нов ариф­ме­ти­че­ской про­грес­сии равна 27, а сумма по­след­них трех чле­нов дан­ной про­грес­сии равна 45. Сколь­ко чле­нов в за­дан­ной ариф­ме­ти­че­ской про­грес­сии, если ее пер­вый член равен 7?

1) 3
2) 4
3) 5
4) 6
21.  
i

На пря­мой по­сле­до­ва­тель­но рас­по­ло­же­ны на рав­ном рас­сто­я­нии точки C, D, E, F и K. Най­ди­те ко­ор­ди­на­ты точки K, если D(−8; 3) и E(1; 5).

1) (11; 5)
2) (14; 8)
3) (19; 1)
4) (19; 9)
22.  
i

Упро­сти­те вы­ра­же­ние  левая круг­лая скоб­ка минус 3 a в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка b в квад­ра­те пра­вая круг­лая скоб­ка в кубе .

1)  минус 9 a в сте­пе­ни левая круг­лая скоб­ка 18 пра­вая круг­лая скоб­ка b в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка
2)  минус 27 a в сте­пе­ни левая круг­лая скоб­ка 9 пра­вая круг­лая скоб­ка b в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка
3)  минус 27 a в сте­пе­ни левая круг­лая скоб­ка 18 пра­вая круг­лая скоб­ка b в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка
4) 27 a в сте­пе­ни левая круг­лая скоб­ка 18 пра­вая круг­лая скоб­ка b в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка
23.  
i

Ре­ши­те урав­не­ние: 9 в сте­пе­ни левая круг­лая скоб­ка \log пра­вая круг­лая скоб­ка _9 левая круг­лая скоб­ка 4x минус 4 пра­вая круг­лая скоб­ка =x в квад­ра­те минус 1.

1) 3
2) 1
3) 0
4) 2
24.  
i

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство \ctg x боль­ше дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби .

1)  левая круг­лая скоб­ка Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
2)  левая круг­лая скоб­ка 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
3)  левая круг­лая скоб­ка Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
4)  левая круг­лая скоб­ка 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: x в квад­ра­те плюс 2x конец дроби ,x_0=1.

1) y = минус дробь: чис­ли­тель: x, зна­ме­на­тель: 3 конец дроби плюс дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
2) y = дробь: чис­ли­тель: 4x, зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: 7, зна­ме­на­тель: 9 конец дроби
3) y = минус дробь: чис­ли­тель: 2x, зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: 7, зна­ме­на­тель: 9 конец дроби
4) y = минус дробь: чис­ли­тель: 4x, зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: 7, зна­ме­на­тель: 9 конец дроби
26.  
i

Перед отъ­ез­дом в Япо­нию, Самат при­об­рел для хра­не­ния важ­ных до­ку­мен­тов и цен­ных вещей ко­до­вый сейф с ше­сти­знач­ным кодом, со­сто­я­щим из цифр 1, 2, 3 и букв M, N, K.

Сколь­ко ше­сти­знач­ных кодов для от­кры­ва­ния сейфа можно со­ста­вить из дан­ных цифр и букв?

1) 120
2) 36
3) 720
4) 5040
27.  
i

Перед отъ­ез­дом в Япо­нию, Самат при­об­рел для хра­не­ния важ­ных до­ку­мен­тов и цен­ных вещей ко­до­вый сейф с ше­сти­знач­ным кодом, со­сто­я­щим из цифр 1, 2, 3 и букв M, N, K.

Сколь­ко ше­сти­знач­ных кодов для от­кры­ва­ния сейфа можно со­ста­вить из дан­ных цифр так, чтобы буква M была пер­вой?

1) 5040
2) 36
3) 720
4) 120
28.  
i

Перед отъ­ез­дом в Япо­нию, Самат при­об­рел для хра­не­ния важ­ных до­ку­мен­тов и цен­ных вещей ко­до­вый сейф с ше­сти­знач­ным кодом, со­сто­я­щим из цифр 1, 2, 3 и букв M, N, K.

Сколь­ко ва­ри­ан­тов воз­мож­ны при усло­вии, что цифра 1 не долж­на быть пер­вой?

1) 120
2) 400
3) 240
4) 600
29.  
i

Перед отъ­ез­дом в Япо­нию, Самат при­об­рел для хра­не­ния важ­ных до­ку­мен­тов и цен­ных вещей ко­до­вый сейф с ше­сти­знач­ным кодом, со­сто­я­щим из цифр 1, 2, 3 и букв M, N, K.

Сколь­ко ва­ри­ан­тов воз­мож­ны при усло­вии, что буква K не может сто­ять ни на пер­вом месте, ни на ше­стом месте?

1) 480
2) 720
3) 120
4) 320
30.  
i

Перед отъ­ез­дом в Япо­нию, Самат при­об­рел для хра­не­ния важ­ных до­ку­мен­тов и цен­ных вещей ко­до­вый сейф с ше­сти­знач­ным кодом, со­сто­я­щим из цифр 1, 2, 3 и букв M, N, K.

Сколь­ко ше­сти­знач­ных кодов для от­кры­ва­ния сейфа воз­мож­ны, если буквы M и K долж­ны сто­ять рядом?

1) 720
2) 320
3) 120
4) 240

Функ­ция за­да­на урав­не­ни­ем y = 5 в сте­пе­ни x минус 5. Уста­но­ви­те со­от­вет­ствия:

A) Нуль функ­ции

Б) Мно­же­ство зна­че­ний функ­ции

1)  левая круг­лая скоб­ка минус 5; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка

2)  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка

3) 1

4) 0

32.  
i

Шар впи­сан в конус, длина об­ра­зу­ю­щей ко­то­ро­го равна 25, а пло­щадь пол­ной по­верх­но­сти равна 224π. Уста­но­ви­те со­от­вет­ствие между вы­со­той ко­ну­са, ра­ди­у­сом шара и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Вы­со­та ко­ну­са

Б) Ра­ди­ус шара

1) (10; 14)

2) [15; 19)

3) (21; 26]

4) [5; 7]

33.  
i

Най­ди­те два на­ту­раль­ных числа a и b, если из­вест­но, что от­но­ше­ние чисел a и b равно 2, а от­но­ше­ние суммы их квад­ра­тов этих чисел к их раз­но­сти равно 10.

A) Число a при­над­ле­жит про­ме­жут­ку

Б) Число b при­над­ле­жит про­ме­жут­ку

1) (6; 10)

2) (3; 5)

3) (1; 2]

4) (0; 1)

34.  
i

Даны урав­не­ния 2 в сте­пе­ни левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка = 64 и  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та в квад­ра­те минус 2x минус 3=0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 2, 0, 5

2) 8, −1, 3

3) −2, 3, 2

4) 8, 3, 6

35.  
i

Дана гео­мет­ри­че­ская про­грес­сия (bn), зна­ме­на­тель ко­то­рой равен 2 и  b_1 = минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби . Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) S6

Б) b6 − b3

1) −21

2) −54

3) −47,25

4) 2

36.  
i

Pас­сто­я­ние на плане между двумя точ­ка­ми 2,3 см. Вы­чис­ли­те со­от­вет­ству­ю­щее рас­сто­я­ние в дей­стви­тель­но­сти, если

Mас­штаб плана равен 1 : 1 000 000.

1) 230 км
2) 23 км
3) 230 км
4) 0,23 км
5) 23 м
6) 23 000 м
37.  
i

Зна­че­ние вы­ра­же­ния 5 синус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби плюс 5 ко­си­нус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби равно

1) 5
2) 0
3) 1
4) −5
5) −1
6) 10
38.  
i

Даны три числа, об­ра­зу­ю­щие гео­мет­ри­че­скую про­грес­сию. Если от пер­во­го числа вы­честь 12, то эти числа об­ра­зу­ют ариф­ме­ти­чеcкую про­грес­сию, ко­то­рые в сумме равны боль­ше­му члену гео­мет­ри­че­ской про­грес­сии. Най­ди­те эти числа и вы­бе­ри­те из пред­ло­жен­ных ва­ри­ан­тов числа, со­от­вет­ству­ю­щие гео­мет­ри­че­ской или ариф­ме­ти­чеcкой про­грес­си­ям

1) 18; 10; 2
2) 13; 5; 1
3) 32; 8; 2
4) 27; 9; 3
5) 15; 9; 3
6) 37; 18,5; 9,25
39.  
i

Ре­ши­те си­сте­му ло­га­риф­ми­че­ских урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка x минус 2y минус 6 пра­вая круг­лая скоб­ка =0, новая стро­ка \log _2 левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка =1. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
5)  дробь: чис­ли­тель: 6, зна­ме­на­тель: 10 конец дроби
6)  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби
40.  
i

Шар ра­ди­у­сом 5 см пе­ре­се­чен плос­ко­стью, от­сто­я­щей от его цен­тра на 3 см. Най­ди­те ра­ди­ус и диа­метр круга, по­лу­чив­ше­го­ся в се­че­нии.

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та см
2) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та см
3) 8 см
4) 16 см
5) 4 см
6) 8 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та см