Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 19330
1.  
i

Вы­чис­ли­те:  левая круг­лая скоб­ка 29 умно­жить на 46 плюс 464 пра­вая круг­лая скоб­ка :899 плюс 675.

1) 678
2) 677
3) 676
4) 682
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 64b в квад­ра­те плюс 128b плюс 64, зна­ме­на­тель: b конец дроби : левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: b конец дроби плюс 4 пра­вая круг­лая скоб­ка при b= минус дробь: чис­ли­тель: 15, зна­ме­на­тель: 16 конец дроби .

1) 16
2) 1
3) 15
4) 0
3.  
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: ко­си­нус 42 гра­ду­сов плюс синус в квад­ра­те 21 гра­ду­сов , зна­ме­на­тель: ко­си­нус в квад­ра­те 21 гра­ду­сов конец дроби плюс 1.

1)  ко­си­нус 21 гра­ду­сов
2) 2
3)  синус 42 гра­ду­сов
4) 0
4.  
i

Раз­ло­жи­те мно­го­член на мно­жи­те­ли: ax минус ay плюс xb минус yb.

1)  левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a минус b пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a минус b пра­вая круг­лая скоб­ка
5.  
i

Най­ди­те корни урав­не­ния: |2x минус 6| = 10.

1) −10; 4
2) −2; 8
3) −8; 2
4) −2; 6
6.  
i

Ре­ши­те си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний 2x плюс 5y=5,x минус 2y=7. конец си­сте­мы .

Для по­лу­чен­но­го ре­ше­ния (x0; y0) си­сте­мы вы­чис­ли­те сумму x0 + y0.
1) 2
2) 12
3) 3
4) 4
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка 2 ко­си­нус 2x минус 3 синус 3x пра­вая круг­лая скоб­ка dx.

1)  ко­си­нус 2x плюс синус 3x плюс C
2)  синус 2x минус ко­си­нус 3x плюс C
3)  синус x плюс ко­си­нус x плюс C
4)  синус 2x плюс ко­си­нус 3x плюс C
8.  
i

Пря­мо­уголь­ный тре­уголь­ник с ги­по­те­ну­зой 12 см и ост­рым углом 60° вра­ща­ет­ся во­круг мень­ше­го ка­те­та. Най­ди­те вы­со­ту по­лу­чен­ной фи­гу­ры вра­ще­ния.

1) 8 см
2) 10 см
3) 12 см
4) 6 см
9.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 2 ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 8 конец ар­гу­мен­та мень­ше 4, ко­рень из: на­ча­ло ар­гу­мен­та: 3 минус 2x конец ар­гу­мен­та боль­ше или равно 3 конец си­сте­мы . и ука­жи­те ко­ли­че­ство целых ре­ше­ний си­сте­мы не­ра­венств.

1) 2
2) 1
3) 5
4) 4
10.  
i

Ре­ши­те урав­не­ние 3 умно­жить на дробь: чис­ли­тель: синус x, зна­ме­на­тель: ко­си­нус x конец дроби = ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

1)  \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи n, n при­над­ле­жит Z
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи n, n при­над­ле­жит Z
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи n, n при­над­ле­жит Z
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи n, n при­над­ле­жит Z
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 4x в кубе минус 3x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка 3;4 пра­вая круг­лая скоб­ка .

1) x в сте­пе­ни левая круг­лая скоб­ка 8 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 2726, зна­ме­на­тель: 7 конец дроби
2) x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка
3) x в квад­ра­те минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 2726, зна­ме­на­тель: 7 конец дроби
4) x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 6022, зна­ме­на­тель: 7 конец дроби .
12.  
i

Най­ди­те пару чисел (x; y), вы­бе­ри­те ту, ко­то­рая не удо­вле­тво­ря­ет ре­ше­нию не­ра­вен­ства: 4x минус 5 боль­ше или равно y.

1) (5; 2)
2) (2; 1)
3) (3; −1)
4) (−3; −4)
13.  
i

Точки A(1; 1), B(3; 5) и C(7; 3) со­от­вет­ствен­но вер­ши­ны тре­уголь­ни­ка ABC. Длина ме­ди­а­ны BM равна

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та
3) 3
4) 4
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 3 до 6, дробь: чис­ли­тель: 8x минус 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та конец дроби dx.

1) 5 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 14 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2) 5 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 8 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
3) 5 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 14 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4) 5 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 14 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
15.  
i

B пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD точка O — центр ос­но­ва­ния, S — вер­ши­на, SA = 10 см и BD = 16 см. Най­ди­те длину от­рез­ка SO.

1) 7 см
2) 8 см
3) 5 см
4) 6 см
16.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния 2x умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 30 конец ар­гу­мен­та =x в квад­ра­те плюс x плюс 30.

1) 1
2) 4
3) 6
4) 7
17.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 2 x плюс ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка y минус 1 пра­вая круг­лая скоб­ка =3,y=2x плюс 1. конец си­сте­мы .

1) (2; 4)
2) (4; 3)
3) (3; 1)
4) (2; 5)
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=3x в квад­ра­те минус 3x плюс 3,y= минус 3x плюс 2,0 мень­ше или равно x мень­ше или равно 1.

1) 6
2) 14
3) 2
4) 1,5
19.  
i

Най­ди­те ко­ли­че­ство сто­рон мно­го­уголь­ни­ка, если каж­дый его угол равен 170 гра­ду­сов.

1) 32
2) 40
3) 24
4) 36
20.  
i

В гео­мет­ри­че­ской про­грес­сии b_3 = дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби и q = 3. Най­ди­те вось­мой член про­грес­сии.

1) 39
2) 18
3) 9
4) 27
21.  
i

В пра­виль­ной ше­сти­уголь­ной приз­ме ABCDEFA_1B_1C_1D_1, все рёбра ко­то­рой равны 3, най­ди­те |\overrightarrowC_1E_1 плюс 2\overrightarrowFA плюс \overrightarrowD_1D|.

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
2) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
22.  
i

Упро­сти­те:  дробь: чис­ли­тель: синус 3 альфа , зна­ме­на­тель: синус альфа конец дроби минус дробь: чис­ли­тель: ко­си­нус 3 альфа , зна­ме­на­тель: ко­си­нус альфа конец дроби .

1) 0
2) 1
3) 2
4) −1
23.  
i

Ре­ши­те урав­не­ние x в сте­пе­ни левая круг­лая скоб­ка 3 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 81 конец дроби .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби ; 5
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; 81
24.  
i

Ре­ши­те не­ра­вен­ство 3 в сте­пе­ни x мень­ше 27 умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка .

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 3 пра­вая круг­лая скоб­ка
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та ,x_0= минус 3.

1) y = дробь: чис­ли­тель: ко­рень 3 сте­пе­ни из 3 , зна­ме­на­тель: 3 конец дроби x минус дробь: чис­ли­тель: 2 ко­рень 3 сте­пе­ни из 3 , зна­ме­на­тель: 3 конец дроби
2) y = дробь: чис­ли­тель: ко­рень 3 сте­пе­ни из 3 , зна­ме­на­тель: 9 конец дроби x минус дробь: чис­ли­тель: 2 ко­рень 3 сте­пе­ни из 3 , зна­ме­на­тель: 3 конец дроби
3) y = дробь: чис­ли­тель: ко­рень 3 сте­пе­ни из 3 , зна­ме­на­тель: 9 конец дроби x минус дробь: чис­ли­тель: 2 ко­рень 3 сте­пе­ни из 3 , зна­ме­на­тель: 9 конец дроби
4) y = дробь: чис­ли­тель: ко­рень 3 сте­пе­ни из 3 , зна­ме­на­тель: 9 конец дроби x плюс дробь: чис­ли­тель: 2 ко­рень 3 сте­пе­ни из 3 , зна­ме­на­тель: 3 конец дроби
26.  
i

Дет­ское ве­дер­ко имеет форму усе­чен­но­го ко­ну­са с диа­мет­ра­ми ос­но­ва­нии 10 см и 34 см (ниж­нее ос­но­ва­ние мень­ше верх­не­го), об­ра­зу­ю­щей 13 см.

Если  Пи = 3, то пло­щадь ниж­не­го ос­но­ва­ния равна

1) 720 см2
2) 432 см2
3) 75 см2
4) 48 см2
27.  
i

Алек­сандр из­го­то­ви­ла ко­ну­со­об­раз­ный го­лов­ной убор  — кол­пак (см. рис.).

H=15 см, R=8 см

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, π ≈ 3.

1) 428 см2
2) 394 см2
3) 402 см2
4) 408 см2
28.  
i

Дет­ское ве­дер­ко имеет форму усе­чен­но­го ко­ну­са с диа­мет­ра­ми ос­но­ва­нии 10 см и 34 см (ниж­нее ос­но­ва­ние мень­ше верх­не­го), об­ра­зу­ю­щей 13 см.

Вы­со­та ве­дер­ка равна

1) 5 см
2) 2 см
3) 4 см
4) 3 см
29.  
i

Алек­сандр из­го­то­ви­ла ко­ну­со­об­раз­ный го­лов­ной убор  — кол­пак (см. рис.).

H=15 см, R=8 см

Сколь­ко нужно ленты, чтобы об­вить края кол­па­ка, если π ≈ 3?

1) 44 см
2) 48 см
3) 42 см
4) 54 см
30.  
i

Алек­сандр из­го­то­ви­ла ко­ну­со­об­раз­ный го­лов­ной убор  — кол­пак (см. рис.).

H=15 см, R=8 см

Если ста­кан и кол­пак имеют оди­на­ко­вые объ­е­мы, то сколь­ко бы по­ме­сти­лось воды в ста­кан, если π ≈ 3?

1) 954 см3
2) 876 см3
3) 1102 см3
4) 960 см3
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = 3 синус x минус 1. Уста­но­ви­те со­от­вет­ствие между наи­боль­шим и наи­мень­шим зна­че­ни­я­ми функ­ции и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Наи­боль­шее зна­че­ние функ­ции

Б) Наи­мень­шее зна­че­ние функ­ции

1) 1

2) 2

3) −4

4) −1

32.  
i

Пло­щадь пра­виль­но­го тре­уголь­ни­ка равна 12 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та . Уста­но­ви­те со­от­вет­ствие между дли­ной сто­ро­ны тре­уголь­ни­ка, ра­ди­у­сом окруж­но­сти, опи­сан­ной около него и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина сто­ро­ны тре­уголь­ни­ка

Б) Ра­ди­ус окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка

1) 4 ко­рень из 3

2) 2 ко­рень из 3

3) 4

4) 3

33.  
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 6x плюс 9 конец ар­гу­мен­та , если из­вест­но, что x боль­ше 3. Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x2, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x2

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) (−20; −15]

2) (−10; −3)

3) [1; 2)

4) (3; 8)

34.  
i

Даны урав­не­ния  ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x в квад­ра­те минус 8x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 2 4 и  дробь: чис­ли­тель: x в квад­ра­те минус 15x плюс 54, зна­ме­на­тель: x минус 6 конец дроби = 0. Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем пер­во­го урав­не­ния, но не яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) 3

2) 2

3) −1

4) 9

35.  
i

Сумма n пер­вых чле­нов ариф­ме­ти­че­ской про­грес­сии (an) опре­де­ля­ет­ся фор­му­лой: S_n= дробь: чис­ли­тель: 5,2 минус 0,8 n, зна­ме­на­тель: 2 конец дроби умно­жить на n. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) S6

Б) a4

1) −0,2

2) 11,2

3) 0

4) 1,2

36.  
i

Опре­де­ли­те, каким про­ме­жут­кам при­над­ле­жит зна­че­ние вы­ра­же­ния 2 ко­рень из x плюс 1, x = ло­га­рифм по ос­но­ва­нию 5 625.

1) (1; 7)
2) (−5; 1)
3) (1; 3)
4) (4; 10)
5) (3; 8)
6) (0; 4)
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус 81 гра­ду­сов синус 51 гра­ду­сов плюс синус 9 гра­ду­сов синус 39 гра­ду­сов .

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3) 0
4) 1
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6) 2
38.  
i

Сумма пер­во­го, чет­вер­то­го и три­на­дца­то­го чле­нов ариф­ме­ти­че­ской про­грес­сии равна –23. Най­ди­те ше­стой ее член и сумму пер­вых 11 чле­нов.

1)  минус дробь: чис­ли­тель: 187, зна­ме­на­тель: 3 конец дроби
2)  минус дробь: чис­ли­тель: 263, зна­ме­на­тель: 3 конец дроби
3)  минус дробь: чис­ли­тель: 230, зна­ме­на­тель: 3 конец дроби
4)  минус дробь: чис­ли­тель: 23, зна­ме­на­тель: 3 конец дроби
5)  дробь: чис­ли­тель: 26, зна­ме­на­тель: 3 конец дроби
6)  минус дробь: чис­ли­тель: 253, зна­ме­на­тель: 3 конец дроби
39.  
i

Ре­ши­те си­сте­му урав­не­ний:

 си­сте­ма вы­ра­же­ний новая стро­ка x плюс y=1, новая стро­ка x в кубе минус 2y=10. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: y, зна­ме­на­тель: x конец дроби .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3) −2
4)  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 6 конец дроби
5) 4
6)  минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 4 конец дроби
40.  
i

Шар ра­ди­у­сом 5 см пе­ре­се­чен плос­ко­стью, от­сто­я­щей от его цен­тра на 3 см. Най­ди­те ра­ди­ус и диа­метр круга, по­лу­чив­ше­го­ся в се­че­нии.

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та см
2) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та см
3) 8 см
4) 16 см
5) 4 см
6) 8 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та см