Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 28929
1.  
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: ко­рень из: на­ча­ло ар­гу­мен­та: 28 минус 16 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та конец ар­гу­мен­та конец ар­гу­мен­та .

1) 2 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус 1
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та плюс 1
4) 2 минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 9 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 8 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка при x=8.

1) 4
2) 0
3) 2
4) 1
3.  
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: ко­си­нус 50 гра­ду­сов плюс синус в квад­ра­те 25 гра­ду­сов , зна­ме­на­тель: ко­си­нус в квад­ра­те 25 гра­ду­сов конец дроби плюс 1.

1)  синус 25 гра­ду­сов плюс 1
2)  ко­си­нус 25 гра­ду­сов
3) 0
4) 2
4.  
i

При­ве­ди­те од­но­член 7a в кубе c в кубе a в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка c в сте­пе­ни 7 к стан­дарт­но­му виду.

1) 7ac в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка
2) 7a в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка c в сте­пе­ни левая круг­лая скоб­ка минус 10 пра­вая круг­лая скоб­ка
3) 7a в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка c в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка
4) 7ac в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка
5.  
i

Ре­ши­те урав­не­ние:  дробь: чис­ли­тель: 2 x в квад­ра­те плюс 15 x плюс 25, зна­ме­на­тель: 5 плюс x конец дроби =0.

1) −0,4
2) −2,5 и −5
3) −2,5
4) −0,4 и −5
6.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 2x плюс 3y=16,7x минус 5y=25. конец си­сте­мы .

1) (2; 5)
2) (3; 5)
3) (5; 2)
4) (5; 1)
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка синус x ко­си­нус 2x плюс синус 2x ко­си­нус x пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ко­си­нус 3x
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби синус 3x
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ко­си­нус 3x
4)  минус ко­си­нус 3x
8.  
i

Най­ди­те об­ра­зу­ю­щую рав­но­сто­рон­не­го ко­ну­са, если пло­щадь осе­во­го се­че­ния равна 16 ко­рень из 3 см2.

(При­ме­ча­ние Решу ЕНТ: ви­ди­мо, рав­но­сто­рон­ним ко­ну­сом со­ста­ви­те­ли за­да­ния на­зы­ва­ют такой, у ко­то­ро­го осе­вое се­че­ние — рав­но­сто­рон­ний тре­уголь­ник.)

1) 6 см
2) 8 см
3) 10 см
4) 12 см
9.  
i

Ре­ши­те не­ра­вен­ство  дробь: чис­ли­тель: x в квад­ра­те плюс 16, зна­ме­на­тель: x в квад­ра­те минус 16 конец дроби мень­ше или равно дробь: чис­ли­тель: 25 плюс 8 x, зна­ме­на­тель: x в квад­ра­те минус 16 конец дроби .

1)  левая квад­рат­ная скоб­ка 1; 4 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 4; 16 пра­вая квад­рат­ная скоб­ка
2) [1; −2)
3) (3; 4)
4)  левая круг­лая скоб­ка минус 4; минус 1 пра­вая квад­рат­ная скоб­ка \cup левая круг­лая скоб­ка 4; 9 пра­вая квад­рат­ная скоб­ка
10.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 2x= дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 5x в квад­ра­те плюс 3x, зна­ме­на­тель: x конец дроби , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 5;8 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби x в квад­ра­те плюс 3x
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби x в квад­ра­те плюс 3x минус 42
3)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби x в квад­ра­те минус 39,5
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби x в квад­ра­те плюс 3x минус 39,5
12.  
i

Ре­ши­те урав­не­ние  дробь: чис­ли­тель: 10x в квад­ра­те минус 9x минус 1, зна­ме­на­тель: x минус 1 конец дроби = 0.

1)  минус целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 5
2)  целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 5
3) −0,1
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби
13.  
i

Тан­генс мень­ше­го угла тре­уголь­ни­ка со сто­ро­на­ми 10 см, 17 см, 21 см, равен?

1) 1,4
2)  дробь: чис­ли­тель: 8, зна­ме­на­тель: 15 конец дроби
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 8 конец дроби
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 1 до 2, левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби пра­вая круг­лая скоб­ка в квад­ра­те dx.

1)  дробь: чис­ли­тель: 23, зна­ме­на­тель: 6 конец дроби
2)  дробь: чис­ли­тель: 29, зна­ме­на­тель: 9 конец дроби
3)  дробь: чис­ли­тель: 29, зна­ме­на­тель: 6 конец дроби
4)  дробь: чис­ли­тель: 31, зна­ме­на­тель: 6 конец дроби
15.  
i

Пусть ABCD — квад­рат, BM \perp левая круг­лая скоб­ка ABC пра­вая круг­лая скоб­ка . Най­ди­те длину от­рез­ка DM, если AB = 2 ко­рень из 3  см, а BM = 5 см.

1) 6 ко­рень из 2 см
2) 5 ко­рень из 3 см
3) 7 см
4) 6 см
16.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния 4 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка плюс 128=3 в сте­пе­ни левая круг­лая скоб­ка 1 минус x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 12 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка .

1) −4
2) −3
3)  минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4) 3
17.  
i

Ре­ши­те си­сте­му урав­не­ний  си­сте­ма вы­ра­же­ний 2 в сте­пе­ни x умно­жить на 2 в сте­пе­ни y =64,xy=8. конец си­сте­мы .

1) (−2; −4)
2) (−2; −4) и (−4; −2)
3) (2; 4) и (4; 2)
4) (−1; −8) и (−8; −1)
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс x плюс 7,y= минус 3x плюс 3, минус 5 мень­ше или равно x мень­ше или равно 1.

1) 21
2) 18
3) 24
4) 10
19.  
i

В ромбе с пе­ри­мет­ром, рав­ным 40, одна из диа­го­на­лей равна 12. Най­ди­те вто­рую диа­го­наль.

1) 3,5
2) 16
3) 8
4) 6
20.  
i

Най­ди­те пер­вые пять чле­нов по­сле­до­ва­тель­но­сти на­ту­раль­ных чисел крат­ных 5.

1) 5; 10; 15; 20; 25
2) 10; 20; 30; 40; 50
3) 0; 5; 25; 125; 625
4) 0; 5; 10; 15; 20
21.  
i

Век­тор \overrightarrowAB с на­ча­лом в точке A(2; –4) имеет ко­ор­ди­на­ты (6; –5). Най­ди­те ко­ор­ди­на­ты точки B.

1) (4; −9)
2) (9; −10)
3) (8; −9)
4) (8; −7)
22.  
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: x плюс y минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: xy конец ар­гу­мен­та , зна­ме­на­тель: ко­рень из y минус ко­рень из x конец дроби .

1)  левая круг­лая скоб­ка ко­рень из y плюс ко­рень из x пра­вая круг­лая скоб­ка в квад­ра­те
2)  левая круг­лая скоб­ка ко­рень из y минус ко­рень из x пра­вая круг­лая скоб­ка в квад­ра­те
3)  ко­рень из y плюс ко­рень из x
4)  ко­рень из y минус ко­рень из x
23.  
i

Пусть x0  — наи­боль­ший ко­рень урав­не­ния \log в квад­ра­те _9 левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 81 конец дроби пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 9 x минус 22=0, тогда зна­че­ние вы­ра­же­ния 3 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x_0 конец ар­гу­мен­та равно ...

1) 9
2) 81
3) 169
4) 243
24.  
i

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство \ctg x боль­ше или равно минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

1)  левая круг­лая скоб­ка 2 Пи k; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс Пи k пра­вая квад­рат­ная скоб­ка , k при­над­ле­жит Z
2)  левая квад­рат­ная скоб­ка Пи k; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс Пи k пра­вая квад­рат­ная скоб­ка , k при­над­ле­жит Z
3)  левая круг­лая скоб­ка Пи k; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс Пи k пра­вая квад­рат­ная скоб­ка , k при­над­ле­жит Z
4)  левая круг­лая скоб­ка Пи k; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k пра­вая квад­рат­ная скоб­ка , k при­над­ле­жит Z
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в кубе минус x в квад­ра­те плюс x,x_0= минус 1.

1) y = 3x плюс 1
2) y = минус 6x плюс 3
3) y = 6x плюс 3
4) y = 3x плюс 6
26.  
i

Mишень в тире раз­де­ле­на на три сек­то­ра раз­но­го цвета: го­лу­бой, крас­ный и жел­тый. Два стрел­ка, стре­ляя по ми­ше­ни, все­гда по­ра­жа­ют один из сек­то­ров. Ве­ро­ят­ность по­па­да­ния пер­во­го стрел­ка в крас­ную часть ми­ше­ни равна 0,45, а в го­лу­бую — 0,35. Ве­ро­ят­ность по­па­да­ния в жел­тую часть ми­ше­ни вто­ро­го стрел­ка равна 0,7.

Hай­ди­те ве­ро­ят­ность того, что пер­вый стре­лок попал в крас­ную или го­лу­бую часть ми­ше­ни.

1) 0,8
2) 0,35
3) 0,26
4) 0,2
27.  
i

Бро­са­ют од­но­вре­мен­но два иг­раль­ных ку­би­ка, на гра­нях ко­то­рых рас­по­ло­же­ны числа от 1 до 6.

Ко­ли­че­ство спо­со­бов вы­па­де­ния не­чет­но­го числа равна

1) 3
2) 2
3) 6
4) 9
28.  
i

В кре­стьян­ском хо­зяй­стве взве­си­ли клуб­ни кар­то­фе­ля. Массы клуб­ней (в грам­мах) при­ве­де­ны в таб­ли­це.

6059
5759
5658
6161
5859

Раз­ность между самым лег­ким и тя­же­лым клуб­нем равна

1) 9 г
2) 7 г
3) 5 г
4) 2 г
29.  
i

Hа ри­сун­ке изоб­ра­жен ого­род тра­пе­ци­е­вид­ной формы за­се­ян­ный ово­ща­ми (верх­нее ос­но­ва­ние тра­пе­ции равно 180 м, ниж­нее ос­но­ва­ние равно 260 м, вы­со­та равна 200 м) и до­ро­га в виде па­рал­ле­ло­грам­ма ши­ри­ной 5 м, про­хо­дя­щая через ого­род.

B целях рас­ши­ре­ния ого­ро­да все его раз­ме­ры уве­ли­чи­ли в два раза. Най­ди­те пло­щадь но­во­го ого­ро­да вме­сте с до­ро­гой.

1) 186000 м2
2) 106000 м2
3) 276000 м2
4) 176000 м2
30.  
i

Бро­са­ют од­но­вре­мен­но два иг­раль­ных ку­би­ка, на гра­нях ко­то­рых рас­по­ло­же­ны числа от 1 до 6.

Ка­ко­ва ве­ро­ят­ность того, что сумма чисел на двух иг­раль­ных ку­би­ках будет чет­ным чис­лом.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби
31.  
i

Квад­ра­тич­ная функ­ция за­да­на урав­не­ни­ем y = x в квад­ра­те минус 1. Уста­но­ви­те со­от­вет­ствие между ну­ля­ми функ­ции и ко­ор­ди­на­та­ми вер­ши­ны па­ра­бо­лы.

A)  Нули функ­ции

Б)  Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1)  (1; 1)

2)  {−1; 1}

3)  {2; 0}

4)  (0; −1)

32.  
i

Ра­ди­ус опи­сан­ной около пра­виль­но­го тре­уголь­ни­ка окруж­но­сти равен 2. Уста­но­ви­те со­от­вет­ствие между дли­ной сто­ро­ны тре­уголь­ни­ка, его пло­ща­дью и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина сто­ро­ны тре­уголь­ни­ка

Б) Пло­щадь тре­уголь­ни­ка

1) 4 ко­рень из 3

2) 3 ко­рень из 3

3) 6

4) 2 ко­рень из 3

33.  
i

Най­ди­те два на­ту­раль­ных числа x и y, если из­вест­но, что раз­ность чисел x и y равна 1, а сумма квад­ра­тов этих чисел равно 41.

A) Число x при­над­ле­жит про­ме­жут­ку

Б) Число y при­над­ле­жит про­ме­жут­ку

1) (5; 7)

2) (0; 1)

3) [5; 6]

4) (1; 4]

34.  
i

Даны урав­не­ния 2 в сте­пе­ни левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка = 64 и  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та в квад­ра­те минус 2x минус 3=0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 2, 0, 5

2) 8, −1, 3

3) −2, 3, 2

4) 8, 3, 6

35.  
i

В ариф­ме­ти­че­ской про­грес­сии (an) из­вест­но, что a_2 минус a_5=7,8 и a_3= минус 1,8. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) d

Б) a1

1) –3,9

2) –2,6

3) 6

4) 3,4

36.  
i

Зна­че­ние вы­ра­же­ния  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 4 левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 3 пра­вая круг­лая скоб­ка в сте­пе­ни 4 конец ар­гу­мен­та равно:

1) 2 минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
2) 3 минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 2
4) 6 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
5) 12 минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
6) 3 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния \ctg дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 3 конец дроби синус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби тан­генс дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби ко­си­нус дробь: чис­ли­тель: 4 Пи , зна­ме­на­тель: 3 конец дроби .

1)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 12 конец дроби
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
3)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 12 конец дроби
4)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 18 конец дроби
5)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 18 конец дроби
6)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби
38.  
i

Eсли в ариф­ме­ти­че­ской про­грес­сии {an}, a7 = 21, S7 = 105, то най­ди­те d, a1, a5.

1) 13
2) 11
3) 9
4) 3
5) 2
6) 17
39.  
i

Ре­ши­те си­сте­му

 си­сте­ма вы­ра­же­ний новая стро­ка 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка y пра­вая круг­лая скоб­ка =12, новая стро­ка 2 в сте­пе­ни левая круг­лая скоб­ка y пра­вая круг­лая скоб­ка умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =18. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния 2x плюс 3y.

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 49 конец ар­гу­мен­та
2)  ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 343 конец ар­гу­мен­та
3) 8
4) 5
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 81 конец ар­гу­мен­та
6) 7
40.  
i

Дана SABCD пи­ра­ми­да, SO — вы­со­та, АВСD — пря­мо­уголь­ник. Вы­чис­ли­те пло­щадь пол­ной по­верх­но­сти пи­ра­ми­ды, если AD = 6, DC = 8 и SO = 4.

1) 8 левая круг­лая скоб­ка 11 плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
2) 11 плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) 15
4) 4 левая круг­лая скоб­ка 22 плюс 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
5) 16 левая круг­лая скоб­ка 2 плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
6) 17