Заголовок:
Комментарий:
Готово, можно копировать.
РЕШУ ЕНТ — математика
Вариант № 27431
1.  
i

Упро­сти­те вы­ра­же­ние Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния Broken TeX  при Broken TeX

1) 8
2) 32
3) 4
4) 16
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния Broken TeX

1) 1
2) −0,5
3) 0,5
4) −1,25
4.  
i

Пре­об­ра­зуй­те вы­ра­же­ние Broken TeX вы­де­лив пол­ный квад­рат.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
5.  
i

Ре­ши­те урав­не­ние: Broken TeX

1) 1
2) 1,5
3) 0
4) 2,5; −1,5
6.  
i

Ре­ши­те си­сте­му урав­не­ний

Broken TeX

Если (x0; y0) — ре­ше­ние си­сте­мы, то x0 = 
1) −6
2) −16
3) 2
4) 6
7.  
i

Най­ди­те не­опре­делённый ин­те­грал Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
8.  
i

Ра­ди­ус верх­не­го ос­но­ва­ния усечённого ко­ну­са равен 2 м, вы­со­та — 6 м. Най­ди­те ра­ди­ус ниж­не­го ос­но­ва­ния, если его объём равен 38π м3.

1) 4 м
2) 2 м
3) 3 м
4) 1 м
9.  
i

Наи­мень­шее на­ту­раль­ное ре­ше­ние си­сте­мы не­ра­венств Broken TeX равно

1) 7
2) Broken TeX
3) 0
4) −4
10.  
i

Какое из при­ве­ден­ных урав­не­ний не имеет кор­ней?

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
11.  
i

Най­ди­те зна­че­ние про­из­вод­ной функ­ции Broken TeX в точке x  =  1.

1) Broken TeX
2) Broken TeX
3) 21
4) Broken TeX
12.  
i

Какой про­ме­жу­ток яв­ля­ет­ся ре­ше­ни­ем не­ра­вен­ства: Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
13.  
i

В тре­уголь­ни­ке ACB AC  =  6, MN  =  4, AB  =  4,8, MN || AB. Най­ди­те MC.

1) 4
2) 5
3) 2
4) 3
14.  
i

Вы­чис­ли­те ин­те­грал: Broken TeX

1) 1
2) 0,5
3) −0,5
4) 0
15.  
i

Най­ди­те угол между плос­ко­стя­ми, если Broken TeX Broken TeX см и Broken TeX см.

1) 90°
2) 30°
3) 60°
4) 45°
16.  
i

Ука­жи­те корни урав­не­ния: Broken TeX

1) 1; 3
2) 0; 2
3) 3; 2
4) 2; 1
17.  
i

Ре­ши­те си­сте­му урав­не­ний: Broken TeX

1) (13; 9)
2) (14; 10)
3) (12; 8)
4) (13; −9)
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной двумя пря­мы­ми: Broken TeX

1) 42
2) 40,5
3) 40
4) 36
19.  
i

Внут­рен­ний угол пра­виль­но­го мно­го­уголь­ни­ка равен 172°. Ко­ли­че­ство сто­рон дан­но­го мно­го­уголь­ни­ка равно

1) 24
2) 45
3) 18
4) 36
20.  
i

Ариф­ме­ти­че­ская про­грес­сия 5, 8, 11... и гео­мет­ри­че­ская про­грес­сия 4, 8, 16... имеют по 50 чле­нов. Сколь­ко оди­на­ко­вых чле­нов в обеих про­грес­си­ях?

1) 2
2) 1
3) 3
4) 4
21.  
i

Век­тор Broken TeX с кон­цом в точке B(5; 3) имеет ко­ор­ди­на­ты (3; 1). Най­ди­те ко­ор­ди­на­ты точки A.

1) (2; 4)
2) (1; 2)
3) (4; 3)
4) (2; 2)
22.  
i

Со­кра­ти­те дробь: Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
23.  
i

Пусть x0  — наи­боль­ший ко­рень урав­не­ния Broken TeX тогда зна­че­ние вы­ра­же­ния Broken TeX равно ...

1) 2
2) 8
3) 16
4) 56
24.  
i

Ре­ши­те не­ра­вен­ство Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции Broken TeX в точке с абс­цис­сой Broken TeX если Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
26.  
i

Пи­ра­мид­ка — это вто­рая по по­пу­ляр­но­сти ме­ха­ни­че­ская го­ло­во­лом­ка в мире. Она имеет вид тет­ра­эд­ра, у ко­то­ро­го грани раз­де­ле­ны на 9 рав­но­сто­рон­них тре­уголь­ни­ков со сто­ро­ной 3 см. Все грани Пи­ра­мид­ки раз­но­го цвета. Меф­ферт изоб­рел Пи­ра­мид­ку в 1971 г — почти на 10 лет рань­ше, чем Эрно Рубик при­ду­мал свой зна­ме­ни­тый кубик. Но толь­ко после успе­ха ку­би­ка Ру­би­ка Меф­ферт решил за­па­тен­то­вать свое изоб­ре­те­ние. Эле­мен­ты пи­ра­мид­ки Меф­фер­та: А — «угол­ки» (имеют 3 цвет­ные грани), В — «ребра» (имеют 2 цвет­ные грани), С — «ра­ди­а­то­ры» (имеют 1 цвет­ную грань).

A

B

C

Най­ди­те пло­щадь по­верх­но­сти всех «угол­ков»

1) Broken TeX см2
2) Broken TeX см2
3) Broken TeX см2
4) Broken TeX см2
27.  
i

Самат стро­ит дач­ный домик формы пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с раз­ме­ра­ми 6 м х 4 м и вы­со­той 3 м. Для этого он за­ку­пил сте­но­вые па­не­ли «Сэнд­вич» раз­ме­ра­ми 3 м х 1 м, и двер­ное по­лот­но с раз­ме­ра­ми 2,1 м х 1 м, окон­ные блоки раз­ме­ра­ми 1,8 м х 1,2 м.

Каков объем дач­но­го до­ми­ка? Ответ при­ве­ди­те в ку­би­че­ских мет­рах.

1) 24
2) 18
3) 12
4) 72
28.  
i

Гра­нит­ный по­ста­мент для уста­нов­ки ме­мо­ри­аль­ной плиты имеет форму пра­виль­ной усе­чен­ной пи­ра­ми­ды, верх­няя пло­щад­ка — квад­рат сто­ро­ной 2 метра, сто­ро­на ниж­не­го ос­но­ва­ния 10 мет­ров, его вы­со­та 7 мет­ров.

Рас­счи­тать ко­ли­че­ство ка­мен­ной де­ко­ра­тив­ной шту­ка­тур­ки для вы­со­ко­ка­че­ствен­но­го ошту­ка­ту­ри­ва­ния бо­ко­вой по­верх­но­сти по­ста­мен­та. Рас­ход рас­тво­ра для де­ко­ра­тив­ной шту­ка­тур­ки 0,02 м3 на один квад­рат­ный метр. Ответ округ­ли­те до целых.

1) 5 м3
2) 4 м3
3) 3 м3
4) 6 м3
29.  
i

Гра­нит­ный по­ста­мент для уста­нов­ки ме­мо­ри­аль­ной плиты имеет форму пра­виль­ной усе­чен­ной пи­ра­ми­ды, верх­няя пло­щад­ка — квад­рат сто­ро­ной 2 метра, сто­ро­на ниж­не­го ос­но­ва­ния 10 мет­ров, его вы­со­та 7 мет­ров.

Най­ди­те массу под­став­ки, если удель­ная плот­ность гра­ни­та 2,5 г/см3. Ответ вы­ра­зить в кг.

1) 722300 кг
2) 722500 кг
3) 722250 кг
4) 722350 кг
30.  
i

Гра­нит­ный по­ста­мент для уста­нов­ки ме­мо­ри­аль­ной плиты имеет форму пра­виль­ной усе­чен­ной пи­ра­ми­ды, верх­няя пло­щад­ка — квад­рат сто­ро­ной 2 метра, сто­ро­на ниж­не­го ос­но­ва­ния 10 мет­ров, его вы­со­та 7 мет­ров.

Какой длины нужно по­ре­зать ко­ван­ную де­ко­ра­тив­ную ме­тал­ли­че­скую по­ло­су для за­креп­ле­ния ее от углов верх­не­го ос­но­ва­ния пер­пен­ди­ку­ляр­но реб­рам ниж­не­го ос­но­ва­ния. Ответ округ­ли­те до целых.

1) 64 м
2) 62 м
3) 60 м
4) 63 м
31.  
i

Функ­ция за­да­на урав­не­ни­ем Broken TeX Уста­но­ви­те со­от­вет­ствие между наи­боль­шим и наи­мень­шим зна­че­ни­я­ми функ­ции и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Наи­боль­шее зна­че­ние функ­ции

Б) Наи­мень­шее зна­че­ние функ­ции

1) 1

2) 3

3) −2

4) 6

32.  
i

Две окруж­но­сти ра­ди­у­са­ми 2 и 3 ка­са­ют­ся внеш­ним об­ра­зом друг с дру­гом и внут­рен­ним об­ра­зом с окруж­но­стью ра­ди­у­са 15. Уста­но­ви­те со­от­вет­ствие между дли­ной боль­шей сто­ро­ны тре­уголь­ни­ка, об­ра­зо­ван­но­го цен­тра­ми окруж­но­стей, его ме­ди­а­ной, про­ве­ден­ной из вер­ши­ны боль­ше­го угла, и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина боль­шей сто­ро­ны тре­уголь­ни­ка

Б) Длина ме­ди­а­ны тре­уголь­ни­ка, про­ве­ден­ной из вер­ши­ны боль­ше­го угла

1) 12

2) 13

3) 6,5

4) 8

33.  
i

Най­ди­те два на­ту­раль­ных числа a и b, от­но­ше­ние ко­то­рых равно 3, а от­но­ше­ние суммы их квад­ра­тов к их сумме равно 10. Уста­но­ви­те со­от­вет­ствия:

A) Число a при­над­ле­жит про­ме­жут­ку

Б) Число b при­над­ле­жит про­ме­жут­ку

1) [1; 3)

2) [3; 4]

3) (10; 12]

4) (6; 8)

Даны урав­не­ния Broken TeX и Broken TeX Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 1, 2, 4

2) 0, 7, 1

3) 0, 6, −2

4) 6, 5, −2

35.  
i

В ариф­ме­ти­че­ской про­грес­сии (an) вто­рой член равен 18, а раз­ность про­грес­сии d  =  2,4. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) a1

Б) S7

1) 15,6

2) 159,6

3) 13,2

4) 142,8

36.  
i

Зна­че­ние вы­ра­же­ния Broken TeX равно:

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
5) Broken TeX
6) Broken TeX
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
5) Broken TeX
6) Broken TeX
38.  
i

Сумма трех чисел, со­став­ля­ю­щих ариф­ме­ти­че­скую про­грес­сию, у ко­то­рой раз­ность боль­ше нуля, равна 18. Если к этим чис­лам при­ба­вить со­от­вет­ствен­но 4, 2 и 18, то по­лу­чен­ные числа со­став­ля­ют пер­вые три члена гео­мет­ри­че­ской про­грес­сии. Най­ди­те эти три числа.

1) −2
2) 6
3) 8
4) 14
5) 10
6) 4
39.  
i

Ре­ши­те си­сте­му, при­во­ди­мую к со­дер­жа­щей од­но­род­ное урав­не­ние

Broken TeX

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния Broken TeX

1) Broken TeX
2) 12
3) Broken TeX
4) 5
5) 10
6) 8
40.  
i

В конус с вы­со­той 15 см и ра­ди­у­сом 10 см впи­сан ци­линдр с вы­со­той 12 см. Най­ди­те объём ци­лин­дра.

1) 48 см3
2) 48π см3
3) Broken TeX
4) 98π см3
5) Broken TeX
6) Broken TeX