Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 22947
1.  
i

Hай­ди­те зна­че­ние вы­ра­же­ния m = \left| дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби минус целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3 | и вы­бе­ри­те вер­ное не­ра­вен­ство среди пред­ло­жен­ных

1) m мень­ше минус 1
2) 0 мень­ше m мень­ше 1
3) m мень­ше 0
4) m боль­ше 1
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка 8b минус 8 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 8b плюс 8 пра­вая круг­лая скоб­ка минус 8b левая круг­лая скоб­ка 8b плюс 8 пра­вая круг­лая скоб­ка при b=2,6.

1) −28,8
2) −186
3) −230,4
4) −8
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус в квад­ра­те альфа минус ко­си­нус альфа плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та тан­генс альфа при  альфа = дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби .

1)  целая часть: 3, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
2)  целая часть: 3, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 4
3)  целая часть: 3, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3
4)  целая часть: 4, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
4.  
i

Опре­де­ли­те сте­пень мно­го­чле­на: 3x в сте­пе­ни 5 y в кубе минус 6y в квад­ра­те плюс 12xy в кубе плюс 4.

1) 6
2) 3
3) 8
4) 4
5.  
i

Ре­ши­те урав­не­ние: 1,1|x| плюс 4,9|x| = 27.

1) −6,5; 4,5
2) −4,5; 4,5
3) −5,5; 4,5
4) −4,5; 3,5
6.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 16 минус 2x плюс 3 левая круг­лая скоб­ка y плюс 4 пра­вая круг­лая скоб­ка = 17,2 левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка минус 2 левая круг­лая скоб­ка y минус 5 пра­вая круг­лая скоб­ка минус 44 = 0. конец си­сте­мы .

1) (55; 33)
2) (−5; 3)
3) (5; 3)
4) (−55; 33)
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс дробь: чис­ли­тель: 3, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та конец дроби минус x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 3x в сте­пе­ни левая круг­лая скоб­ка \tfrac43 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби плюс дробь: чис­ли­тель: 2x в сте­пе­ни левая круг­лая скоб­ка \tfrac52 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 8 конец дроби плюс 6 ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс C
2)  дробь: чис­ли­тель: 3x в сте­пе­ни левая круг­лая скоб­ка \tfrac43 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби минус дробь: чис­ли­тель: 2x в сте­пе­ни левая круг­лая скоб­ка \tfrac52 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 8 конец дроби минус 6 ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс C
3)  дробь: чис­ли­тель: 3x в сте­пе­ни левая круг­лая скоб­ка \tfrac43 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби минус дробь: чис­ли­тель: 2x в сте­пе­ни левая круг­лая скоб­ка \tfrac52 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 8 конец дроби плюс 6 ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс C
4)  дробь: чис­ли­тель: 3x в сте­пе­ни левая круг­лая скоб­ка \tfrac23 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби плюс дробь: чис­ли­тель: 2x в сте­пе­ни левая круг­лая скоб­ка \tfrac52 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 8 конец дроби плюс 6 ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс C
8.  
i

Пусть O и O1  — цен­тры ос­но­ва­ний ци­лин­дра, изоб­ра­жен­но­го на ри­сун­ке. Тогда об­ра­зу­ю­щей ци­лин­дра яв­ля­ет­ся от­ре­зок:

1) DB
2) DC
3) OO1
4) AD
9.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 2 ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 8 конец ар­гу­мен­та мень­ше 4, ко­рень из: на­ча­ло ар­гу­мен­та: 3 минус 2x конец ар­гу­мен­та боль­ше или равно 3 конец си­сте­мы . и ука­жи­те ко­ли­че­ство целых ре­ше­ний си­сте­мы не­ра­венств.

1) 2
2) 1
3) 5
4) 4
10.  
i

Ре­ши­те урав­не­ние:  тан­генс левая круг­лая скоб­ка 2x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка = минус 1.

1)  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби плюс Пи k, k при­над­ле­жит Z
2)  минус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 24 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби k, k при­над­ле­жит Z
3)  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 24 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби k, k при­над­ле­жит Z
4)  минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 24 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби k, k при­над­ле­жит Z
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 4x в кубе минус 3x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка 3;4 пра­вая круг­лая скоб­ка .

1) x в сте­пе­ни левая круг­лая скоб­ка 8 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 2726, зна­ме­на­тель: 7 конец дроби
2) x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка
3) x в квад­ра­те минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 2726, зна­ме­на­тель: 7 конец дроби
4) x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 6022, зна­ме­на­тель: 7 конец дроби .
12.  
i

Ре­ши­те не­ра­вен­ство:  ко­си­нус x мень­ше или равно 1.

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи n ; Пи плюс 2 Пи n пра­вая круг­лая скоб­ка ,n при­над­ле­жит Z
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи n ; Пи плюс 2 Пи n пра­вая квад­рат­ная скоб­ка ,n при­над­ле­жит Z
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи n ; Пи плюс 2 Пи n пра­вая круг­лая скоб­ка ,n при­над­ле­жит Z
13.  
i

Пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка с ка­те­та­ми 6 и 9 равна?

1) 48
2) 27
3) 54
4) 33
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 1 до 5, ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та левая круг­лая скоб­ка 3 плюс дробь: чис­ли­тель: 8, зна­ме­на­тель: x конец дроби пра­вая круг­лая скоб­ка dx.

1) 26 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 12
2) 26 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 18
3) 27 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 18
4) 24 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 16
15.  
i

Из точки, не при­над­ле­жа­щей плос­ко­сти, про­ве­де­ны две на­клон­ные, ко­то­рые об­ра­зу­ют с плос­ко­стью углы рав­ные 30° и 60°. Сумма длин про­ек­ций этих на­клон­ных на плос­кость равна 8. Опре­де­ли­те длину мень­шей на­клон­ной.

1) 6
2) 4
3) 3
4) 5
16.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния 2x умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 30 конец ар­гу­мен­та =x в квад­ра­те плюс x плюс 30.

1) 1
2) 4
3) 6
4) 7
17.  
i

Ре­ши­те си­сте­му урав­не­ний

Not match begin/end

и най­ди­те зна­че­ние вы­ра­же­ния x плюс y, где (x, y) — ре­ше­ние си­сте­мы.

1) 0,5
2) 1
3) −0,5
4) 0
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мы­ми y=5x минус 7, y= минус 3x плюс 6, x = минус 1, x = 2.

1) 29
2) 28,125
3) 28,5
4) 28,25
19.  
i

Точка пе­ре­се­че­ния бис­сек­трис двух углов па­рал­ле­ло­грам­ма, при-ле­жа­щих к одной сто­ро­не, при­над­ле­жит про­ти­во­по­лож­ной сто­ро­не. Мень­шая сто­ро­на па­рал­ле­ло­грам­ма равна 5. Най­ди­те его боль­шую сто­ро­ну.

1) 10
2) 5
3) 12
4) 20
20.  
i

Ука­жи­те фор­му­лу n-го члена по­сле­до­ва­тель­но­сти: 3; 8; 13; 18; 23 …

1) 6n – 1
2) 5n + 3
3) 4n – 1
4) 5n – 2
21.  
i

Най­ди­те ко­ор­ди­на­ты век­то­ра \vecp, если при па­рал­лель­ном пе­ре­но­се на век­тор \vecp точка A левая круг­лая скоб­ка минус 5;6; минус 77 пра­вая круг­лая скоб­ка пе­ре­хо­дит в точку B, а B  — се­ре­ди­на от­рез­ка DC, D левая круг­лая скоб­ка 2; минус 3;10 пра­вая круг­лая скоб­ка , C левая круг­лая скоб­ка 312;11; минус 76 пра­вая круг­лая скоб­ка .

1) \ левая квад­рат­ная скоб­ка \vecp левая круг­лая скоб­ка 162; минус 2; минус 26 пра­вая круг­лая скоб­ка \ пра­вая квад­рат­ная скоб­ка
2) \ левая квад­рат­ная скоб­ка \vecp левая круг­лая скоб­ка 162; минус 2; минус 24 пра­вая круг­лая скоб­ка \ пра­вая квад­рат­ная скоб­ка
3) \ левая квад­рат­ная скоб­ка \vecp левая круг­лая скоб­ка 158; минус 2; минус 26 пра­вая круг­лая скоб­ка \ пра­вая квад­рат­ная скоб­ка
4) \ левая квад­рат­ная скоб­ка \vecp левая круг­лая скоб­ка 162;0; минус 25 пра­вая круг­лая скоб­ка \ пра­вая квад­рат­ная скоб­ка
22.  
i

Упро­сти­те вы­ра­же­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: a в сте­пе­ни левая круг­лая скоб­ка 10 конец ар­гу­мен­та , зна­ме­на­тель: 16b в сте­пе­ни 6 конец дроби пра­вая круг­лая скоб­ка , a мень­ше 0, b мень­ше 0.

1)  минус дробь: чис­ли­тель: a в сте­пе­ни 5 , зна­ме­на­тель: 8b в кубе конец дроби
2)  дробь: чис­ли­тель: a в сте­пе­ни 5 , зна­ме­на­тель: 8b в кубе конец дроби
3)  дробь: чис­ли­тель: a в сте­пе­ни 5 , зна­ме­на­тель: 4b в кубе конец дроби
4)  минус дробь: чис­ли­тель: a в сте­пе­ни 5 , зна­ме­на­тель: 4b в кубе конец дроби
23.  
i

Ре­ши­те урав­не­ние x в сте­пе­ни левая круг­лая скоб­ка 3 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 81 конец дроби .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби ; 5
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; 81
24.  
i

Ре­ши­те не­ра­вен­ство  ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 3 конец ар­гу­мен­та боль­ше или равно ко­рень из: на­ча­ло ар­гу­мен­та: 4x минус 1 конец ар­гу­мен­та .

1)  левая квад­рат­ная скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2) нет ре­ше­ний
3)  левая квад­рат­ная скоб­ка 1;2 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;2 пра­вая квад­рат­ная скоб­ка
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка ,x_0=2.

1) y = минус дробь: чис­ли­тель: на­ту­раль­ный ло­га­рифм 3, зна­ме­на­тель: 9 конец дроби x плюс дробь: чис­ли­тель: 1 минус 2 на­ту­раль­ный ло­га­рифм 3, зна­ме­на­тель: 9 конец дроби
2) y = минус дробь: чис­ли­тель: на­ту­раль­ный ло­га­рифм 3, зна­ме­на­тель: 9 конец дроби x плюс дробь: чис­ли­тель: 2 на­ту­раль­ный ло­га­рифм 3, зна­ме­на­тель: 9 конец дроби
3) y = минус дробь: чис­ли­тель: на­ту­раль­ный ло­га­рифм 3, зна­ме­на­тель: 9 конец дроби x плюс дробь: чис­ли­тель: 1 плюс 2 на­ту­раль­ный ло­га­рифм 3, зна­ме­на­тель: 9 конец дроби
4) y = дробь: чис­ли­тель: на­ту­раль­ный ло­га­рифм 3, зна­ме­на­тель: 9 конец дроби x плюс дробь: чис­ли­тель: 1 минус 2 на­ту­раль­ный ло­га­рифм 3, зна­ме­на­тель: 9 конец дроби
26.  
i

Самат стро­ит дач­ный домик формы пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с раз­ме­ра­ми 6 м х 4 м и вы­со­той 3 м. Для этого он за­ку­пил сте­но­вые па­не­ли «Сэнд­вич» раз­ме­ра­ми 3 м х 1 м, и двер­ное по­лот­но с раз­ме­ра­ми 2,1 м х 1 м, окон­ные блоки раз­ме­ра­ми 1,8 м х 1,2 м.

Ка­ко­ва пло­щадь пола дач­но­го до­ми­ка?

1) 20 м2
2) 12 м2
3) 18 м2
4) 24 м2
27.  
i

Дет­ское ве­дер­ко имеет форму усе­чен­но­го ко­ну­са с диа­мет­ра­ми ос­но­ва­нии 10 см и 34 см (ниж­нее ос­но­ва­ние мень­ше верх­не­го), об­ра­зу­ю­щей 13 см.

Во сколь­ко раз ра­ди­ус верх­не­го ос­но­ва­ния боль­ше, чем ра­ди­ус ниж­не­го ос­но­ва­ния

1) в 3,2 раза
2) в 2,9 раза
3) в 3,8 раза
4) в 3,4 раза
28.  
i

Дет­ское ве­дер­ко имеет форму усе­чен­но­го ко­ну­са с диа­мет­ра­ми ос­но­ва­нии 10 см и 34 см (ниж­нее ос­но­ва­ние мень­ше верх­не­го), об­ра­зу­ю­щей 13 см.

Вы­со­та ве­дер­ка равна

1) 5 см
2) 2 см
3) 4 см
4) 3 см
29.  
i

Пер­вый этаж дома со­сто­ит из ком­на­ты и ко­ри­до­ра пря­мо­уголь­ной формы, а также из кухни и ван­ной ком­на­ты квад­рат­ной формы. Вы­со­та по­тол­ков со­став­ля­ет 2,5 м.

Для по­куп­ки гир­лянд в ма­га­зи­не тре­бу­ет­ся вы­брать самый оп­ти­маль­ный ва­ри­ант.

1) Упа­ков­ка гир­лян­ды дли­ной 12 м за 1300 тенге за штуку
2) Упа­ков­ка гир­лян­ды дли­ной 10 м за 1200 тенге за штуку
3) Упа­ков­ка гир­лян­ды дли­ной 5 м за 500 тенге за штуку
4) Упа­ков­ка гир­лян­ды дли­ной 13 м за 1400 тенге за штуку
30.  
i

Дет­ское ве­дер­ко имеет форму усе­чен­но­го ко­ну­са с диа­мет­ра­ми ос­но­ва­нии 10 см и 34 см (ниж­нее ос­но­ва­ние мень­ше верх­не­го), об­ра­зу­ю­щей 13 см.

Опре­де­ли­те, сколь­ко нужно крас­ки для по­кры­тия внеш­ней по­верх­но­сти ве­дер­ки (вклю­чая дно), если на 1 дм2 рас­хо­ду­ет­ся 150 г крас­ки  левая круг­лая скоб­ка Пи \approx 3 пра­вая круг­лая скоб­ка .

1) 1399,5 г
2) 1562,4 г
3) 1765,5 г
4) 1865,4 г
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 4 конец ар­гу­мен­та . Уста­но­ви­те со­от­вет­ствия:

A) Об­ласть опре­де­ле­ния функ­ции

Б) Нули функ­ции

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

2) {−2; 2}

3) {2}

4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

32.  
i

Пло­щадь пра­виль­но­го тре­уголь­ни­ка равна 12 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та . Уста­но­ви­те со­от­вет­ствие между дли­ной сто­ро­ны тре­уголь­ни­ка, ра­ди­у­сом окруж­но­сти, опи­сан­ной около него и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина сто­ро­ны тре­уголь­ни­ка

Б) Ра­ди­ус окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка

1) 4 ко­рень из 3

2) 2 ко­рень из 3

3) 4

4) 3

33.  
i

Най­ди­те два на­ту­раль­ных числа a и b, если из­вест­но, что от­но­ше­ние чисел a и b равно 2, а сумма чисел a и 2b равна 4.

A) Число a при­над­ле­жит про­ме­жут­ку

Б) Число b при­над­ле­жит про­ме­жут­ку

1) (2; 4)

2) (0; 1]

3) (3; 6]

4) [2; 4)

34.  
i

При по­мо­щи гра­фи­ка функ­ции y = ||x плюс 3| минус 4| вы­яс­ни­те, сколь­ко ре­ше­ний имеет урав­не­ние ||x плюс 3| минус 4| = a в за­ви­си­мо­сти от зна­че­ний па­ра­мет­ра a. Уста­но­ви­те со­от­вет­ствие между зна­че­ни­я­ми па­ра­мет­ра a и ко­ли­че­ством ре­ше­ний урав­не­ния

A) a боль­ше 4

Б) 0 мень­ше a мень­ше 4

1) 2

2) 1

3) 4

4) 0

35.  
i

Дана гео­мет­ри­че­ская про­грес­сия (bn), где b2  =  8 и b5  =  512. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем

A) S5

Б) 10 умно­жить на b_3

1) 682

2) 80

3) 674

4) 320

36.  
i

Опре­де­ли­те, каким про­ме­жут­кам при­над­ле­жит зна­че­ние вы­ра­же­ния 2 ко­рень из x плюс 1, x = ло­га­рифм по ос­но­ва­нию 5 625.

1) (1; 7)
2) (−5; 1)
3) (1; 3)
4) (4; 10)
5) (3; 8)
6) (0; 4)
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус 81 гра­ду­сов синус 51 гра­ду­сов плюс синус 9 гра­ду­сов синус 39 гра­ду­сов .

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3) 0
4) 1
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6) 2
38.  
i

Сумма пер­во­го, чет­вер­то­го и три­на­дца­то­го чле­нов ариф­ме­ти­че­ской про­грес­сии равна –23. Най­ди­те ше­стой ее член и сумму пер­вых 11 чле­нов.

1)  минус дробь: чис­ли­тель: 187, зна­ме­на­тель: 3 конец дроби
2)  минус дробь: чис­ли­тель: 263, зна­ме­на­тель: 3 конец дроби
3)  минус дробь: чис­ли­тель: 230, зна­ме­на­тель: 3 конец дроби
4)  минус дробь: чис­ли­тель: 23, зна­ме­на­тель: 3 конец дроби
5)  дробь: чис­ли­тель: 26, зна­ме­на­тель: 3 конец дроби
6)  минус дробь: чис­ли­тель: 253, зна­ме­на­тель: 3 конец дроби
39.  
i

Ре­ши­те си­сте­му по­ка­за­тель­ных урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка 8 в сте­пе­ни левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка =32 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 4y минус 1 пра­вая круг­лая скоб­ка , новая стро­ка 5 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та в сте­пе­ни левая круг­лая скоб­ка 2y плюс 1 пра­вая круг­лая скоб­ка . конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния 4x плюс 2y.

1)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 14 конец дроби
2) 1
3)  ко­рень из 1
4)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 14 конец дроби
5)  дробь: чис­ли­тель: 13, зна­ме­на­тель: 14 конец дроби
6) 2 в сте­пе­ни 0
40.  
i

Дан еди­нич­ный куб ABCDA1B1C1D1 . Най­ди­те угол между пря­мой AB1 и пря­мой BC1.

1)  дробь: чис­ли­тель: 180 гра­ду­сов , зна­ме­на­тель: 3 конец дроби
2) 60°
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
5) 90°
6) 30°