Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 16819
1.  
i

Hай­ди­те сумму: 1 плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби плюс ...

1) 0,5
2) 0,25
3) 2
4) 1
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 9 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 8 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка при x=8.

1) 4
2) 0
3) 2
4) 1
3.  
i

Вы­ра­зи­те угол 240° в ра­ди­а­нах.

1)  дробь: чис­ли­тель: 4 Пи , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: 8 Пи , зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби
4.  
i

Пре­об­ра­зуй­те вы­ра­же­ние 4x в квад­ра­те минус 4x плюс 2, вы­де­лив пол­ный квад­рат.

1)  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те минус 1
2)  левая круг­лая скоб­ка 2x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те минус 1
3)  левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те плюс 1
4)  левая круг­лая скоб­ка 2x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те плюс 1
5.  
i

Pешите урав­не­ние: 8 левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка плюс 3 левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка = минус 21.

1) 0,1
2) 1
3) 1,2
4) 0,2
6.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 2x минус 7y = минус 23, x плюс y = минус 16. конец си­сте­мы .

1)  левая круг­лая скоб­ка 0; минус 15 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 15; 1 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус 12; 1 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус 15; минус 1 пра­вая круг­лая скоб­ка
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка дробь: чис­ли­тель: x плюс 4, зна­ме­на­тель: ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та конец дроби плюс дробь: чис­ли­тель: 2 минус x, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та конец дроби пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 15 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та левая круг­лая скоб­ка 9x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 7, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка минус 10x плюс 90 ко­рень 6 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс 60 пра­вая круг­лая скоб­ка плюс C
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 15 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та левая круг­лая скоб­ка 9x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 7, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка плюс 10x плюс 90 ко­рень 6 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс 60 пра­вая круг­лая скоб­ка плюс C
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 15 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та левая круг­лая скоб­ка 9x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка минус 10x плюс 90 ко­рень 6 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс 60 пра­вая круг­лая скоб­ка плюс C
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 15 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та левая круг­лая скоб­ка 9x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 7, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка минус 10x плюс 90 ко­рень 6 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс 54 пра­вая круг­лая скоб­ка плюс C
8.  
i

Ра­ди­ус шара равен 12 см. Най­ди­те ра­ди­ус се­че­ния шара, если плос­кость се­че­ния со­став­ля­ет угол 45° с ра­ди­у­сом, про­ве­ден­ным в точку се­че­ния ле­жа­щую на сфере.

1) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см
2) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см
3) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
4) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см
9.  
i

Наи­мень­шее на­ту­раль­ное ре­ше­ние си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 3, зна­ме­на­тель: x плюс 4 конец дроби боль­ше или равно дробь: чис­ли­тель: 2, зна­ме­на­тель: x плюс 1 конец дроби , дробь: чис­ли­тель: 5, зна­ме­на­тель: x конец дроби боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус 5 конец дроби конец си­сте­мы . равно

1) 7
2)  дробь: чис­ли­тель: 25, зна­ме­на­тель: 4 конец дроби
3) 0
4) −4
10.  
i

Ре­ши­те урав­не­ние:  ко­си­нус 5x плюс ко­си­нус 3x = 0

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс 2 Пи n; Пи плюс 2 Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи n; Пи плюс 2 Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
4) \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс 2 Пи n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
11.  
i

Най­ди­те зна­че­ние про­из­вод­ной функ­ции x в кубе минус ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та в точке x  =  0.

1) 0
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
4) 1
12.  
i

Из дан­ных пар чисел (x; y), вы­бе­ри­те ту, ко­то­рая не удо­вле­тво­ря­ет ре­ше­нию не­ра­вен­ства: 4x минус 5 боль­ше или равно y.

1) (−3; −4)
2) (5; 2)
3) (3; −1)
4) (1; −4)
13.  
i

Окруж­ность, впи­сан­ная в рав­но­бед­рен­ный тре­уголь­ник, делит в точке ка­са­ния одну из бо­ко­вых сто­рон на два от­рез­ка (как по­ка­за­но на ри­сун­ке), длины ко­то­рых равны 15 и 2, счи­тая от вер­ши­ны. Най­ди­те длину ос­но­ва­ния тре­уголь­ни­ка.

1) 7
2) 4
3) 6
4) 2
14.  
i

Вы­чис­ли­те ин­те­грал:  S = ин­те­грал пре­де­лы: от 0 до дробь: чис­ли­тель: Пи , 4, зна­ме­на­тель: конец дроби левая круг­лая скоб­ка синус 3x ко­си­нус 2x минус ко­си­нус 3x синус 2x пра­вая круг­лая скоб­ка dx

1)  дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
2) 0,5
3) 1
4)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби плюс 1
15.  
i

Опре­де­ли­те по ри­сун­ку длину от­рез­ка ВK, если CD = 5,8 см.

1) 3,2 см
2) 2,9 см
3) 2,6 см
4) 5,2 см
16.  
i

Ре­ши­те урав­не­ние  левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 16, зна­ме­на­тель: 45 конец дроби .

1) 3
2) 0
3) 2
4) −1
17.  
i

Ре­ши­те си­сте­му не­ра­венств

 си­сте­ма вы­ра­же­ний 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка мень­ше левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 6 минус 8 x пра­вая круг­лая скоб­ка , левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 4 x минус 12 пра­вая круг­лая скоб­ка боль­ше 1. конец си­сте­мы .

1) (0; 6)
2) (0; 1)
3) (-2; 6)
4) (2; 6)
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y= минус x в квад­ра­те плюс x плюс 4,y=x плюс 4, минус 4 мень­ше или равно x мень­ше или равно 0.

1)  дробь: чис­ли­тель: 64, зна­ме­на­тель: 5 конец дроби
2)  дробь: чис­ли­тель: 67, зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 64, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 65, зна­ме­на­тель: 3 конец дроби
19.  
i

Внут­рен­ний угол пра­виль­но­го мно­го­уголь­ни­ка равен 172°. Ко­ли­че­ство сто­рон дан­но­го мно­го­уголь­ни­ка равно

1) 24
2) 45
3) 18
4) 36
20.  
i

Если сумма с пя­то­го по вось­мой член ариф­ме­ти­че­ской про­грес­сии равна 48, а раз­ность про­грес­сии равна 2, то ее пер­вый член равен

1) 3
2) 2
3) −3
4) 1
21.  
i

Най­ди­те ко­ор­ди­на­ты век­то­ра \vecp, если при па­рал­лель­ном пе­ре­но­се на век­тор \vecp точка A левая круг­лая скоб­ка минус 5;6; минус 77 пра­вая круг­лая скоб­ка пе­ре­хо­дит в точку B, а B левая круг­лая скоб­ка минус 1;2;6 пра­вая круг­лая скоб­ка .

1) \ левая квад­рат­ная скоб­ка \vecp левая круг­лая скоб­ка 4; минус 4;13 пра­вая круг­лая скоб­ка \ пра­вая квад­рат­ная скоб­ка
2) \ левая квад­рат­ная скоб­ка \vecp левая круг­лая скоб­ка 3; минус 4;13 пра­вая круг­лая скоб­ка \ пра­вая квад­рат­ная скоб­ка
3) \ левая квад­рат­ная скоб­ка \vecp левая круг­лая скоб­ка 4; минус 4;10 пра­вая круг­лая скоб­ка \ пра­вая квад­рат­ная скоб­ка
4) \ левая квад­рат­ная скоб­ка \vecp левая круг­лая скоб­ка 2; минус 6;13 пра­вая круг­лая скоб­ка \ пра­вая квад­рат­ная скоб­ка
22.  
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та плюс 4, при x мень­ше 2.

1) x плюс 2
2) 6 минус x
3)  минус x минус 2
4) x плюс 6
23.  
i

Пусть x0  — наи­боль­ший ко­рень урав­не­ния \log в квад­ра­те _2 левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 32 конец дроби пра­вая круг­лая скоб­ка плюс 4 ло­га­рифм по ос­но­ва­нию 2 x минус 52=0, тогда зна­че­ние вы­ра­же­ния 7 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x_0 конец ар­гу­мен­та равно ...

1) 2
2) 8
3) 16
4) 56
24.  
i

Ре­ши­те не­ра­вен­ство |x плюс 4| умно­жить на левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка мень­ше 0.

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 4 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 1 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 4 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка минус 4; 1 пра­вая круг­лая скоб­ка
4) (−4; 1)
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та ,x_0=4.

1) y = дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x плюс 1
2) y = дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x минус 1
3) y = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби x плюс 1
4) y = 4x плюс 1
26.  
i

Вы­со­та каж­до­го из трех ре­зер­ву­а­ров A, B и C равна 2. При рас­че­тах при­нять  Пи \approx3.

Опре­де­ли­те объем ре­зер­ву­а­ра A.

1) 4,5
2) 6,5
3) 7
4) 8,25
27.  
i

Цир­ко­вой шатер имеет форму ци­лин­дра с по­став­лен­ным на него усе­чен­ным ко­ну­сом. Диа­метр ос­но­ва­ния ци­лин­дра равен 5 м, диа­метр верх­не­го ос­но­ва­ния усе­чен­но­го ко­ну­са равен 1 м. Вы­со­ты ци­лин­дра и усе­чен­но­го ко­ну­са равны 2 м.

Ра­ди­ус ниж­не­го ос­но­ва­ния шатра равен?

1) 1,5 м
2) 2,5 м
3) 2 м
4) 1 м
28.  
i

Вы­со­та каж­до­го из трех ре­зер­ву­а­ров A, B и C равна 2. При рас­че­тах при­нять  Пи \approx3.

Рас­по­ло­жи­те ре­зер­ву­а­ры по воз­рас­та­нию их объ­е­мов, если ра­ди­у­сы ре­зер­ву­а­ры уве­ли­чить на 1.

1) BAC
2) CAB
3) BCA
4) ABC
29.  
i

Цир­ко­вой шатер имеет форму ци­лин­дра с по­став­лен­ным на него усе­чен­ным ко­ну­сом. Диа­метр ос­но­ва­ния ци­лин­дра равен 5 м, диа­метр верх­не­го ос­но­ва­ния усе­чен­но­го ко­ну­са равен 1 м. Вы­со­ты ци­лин­дра и усе­чен­но­го ко­ну­са равны 2 м.

Опре­де­ли­те длину об­ра­зу­ю­щей верх­ней части шатра?

1) 2 ко­рень из 2 м
2) 3 ко­рень из 2 м
3)  ко­рень из 3 м
4) 2 ко­рень из 3 м
30.  
i

Цир­ко­вой шатер имеет форму ци­лин­дра с по­став­лен­ным на него усе­чен­ным ко­ну­сом. Диа­метр ос­но­ва­ния ци­лин­дра равен 5 м, диа­метр верх­не­го ос­но­ва­ния усе­чен­но­го ко­ну­са равен 1 м. Вы­со­ты ци­лин­дра и усе­чен­но­го ко­ну­са равны 2 м.

Бо­ко­вая по­верх­ность, верх­ней части шатра равна  левая круг­лая скоб­ка Пи \approx 3 пра­вая круг­лая скоб­ка

1) 9 ко­рень из 2 м в квад­ра­те
2) 18 ко­рень из 3 м в квад­ра­те
3) 9 ко­рень из 3 м в квад­ра­те
4) 18 ко­рень из 2 м в квад­ра­те
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 4x минус 5 конец ар­гу­мен­та . Уста­но­ви­те со­от­вет­ствия:

A) Об­ласть опре­де­ле­ния функ­ции

Б) Нули функ­ции

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

2) {−5; 1}

3) {−1; 5}

4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

32.  
i

Пло­щадь диа­мет­раль­но­го се­че­ния шара равна 3. Уста­но­ви­те со­от­вет­ствие между ра­ди­у­сом шара, пло­ща­дью его по­верх­но­сти и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Ра­ди­ус шара

Б) Пло­щадь по­верх­но­сти шара

1) (3; 5)

2) [10; 14)

3) (0; 1]

4) (7; 10)

33.  
i

Най­ди­те два числа x и y, x боль­ше 1 боль­ше y, если из­вест­но, что раз­ность чисел x и y равна 6, а раз­ность кубов этих чисел равна 126.

A) Число x при­над­ле­жит про­ме­жут­ку

Б) Число y при­над­ле­жит про­ме­жут­ку

1) (1; 2)

2) [−1; 0]

3) (2; 3)

4) [5; 9)

34.  
i

Даны урав­не­ния  левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5x минус 3 пра­вая круг­лая скоб­ка и  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та в квад­ра­те минус 2x минус 3=0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 1, 3, −3

2) 0, −3, 4

3) 2, 3, 7

4) −1, 2, 3

35.  
i

В ариф­ме­ти­че­ской про­грес­сии (an) из­вест­но, что a_2 минус a_5=7,8 и a_3= минус 1,8. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) d

Б) a1

1) –3,9

2) –2,6

3) 6

4) 3,4

36.  
i

Вы­чис­ли­те  ло­га­рифм по ос­но­ва­нию 2 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та конец ар­гу­мен­та .

1) −1
2) 0
3) 0,5
4) 1
5) 2
6) 3
37.  
i

Зна­че­ние вы­ра­же­ния 6 синус в квад­ра­те дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 8 конец дроби плюс 6 ко­си­нус в квад­ра­те дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 8 конец дроби равно

1) 0
2) −6
3) 6
4) 3
5) −3
6) 4
38.  
i

Cумма трех дан­ных чисел, со­став­ля­ю­щих ариф­ме­ти­че­скую про­грес­сию, у ко­то­рой раз­ность боль­ше нуля, равна 15. Если к этим чис­лам при­ба­вить со­от­вет­ствен­но 1, 4 и 19, то по­лу­чен­ные числа со­став­ля­ют пер­вые три члена гео­мет­ри­че­ской про­грес­сии. Дан­ные три числа равны:

1) 5
2) 8
3) 11
4) 14
5) 2
6) 8
39.  
i

Ре­ши­те си­сте­му ра­ци­о­наль­ных урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2x минус 3y конец дроби плюс дробь: чис­ли­тель: 2, зна­ме­на­тель: 3x минус 2y конец дроби = дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби , новая стро­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2x минус 3y конец дроби минус дробь: чис­ли­тель: 4, зна­ме­на­тель: 3x минус 2y конец дроби =1. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: y, зна­ме­на­тель: x конец дроби .

1) 2
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 4 конец дроби
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 6 конец дроби
4)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
5)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 8 конец дроби
6)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
40.  
i

В пра­виль­ной ше­сти­уголь­ной пи­ра­ми­де SABCDEF с вер­ши­ной S сто­ро­на ос­но­ва­ния равна  ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , а бо­ко­вое ребро равно 2 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та . Най­ди­те угол между реб­ра­ми AS и SD.

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
3) 60°
4) 45°
5) 90°
6)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби