Задания
Версия для печати и копирования в MS Word
Тип 16 № 8128
i

Ре­ши­те урав­не­ние  левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 16, зна­ме­на­тель: 45 конец дроби .

1) 3
2) 0
3) 2
4) −1
Спрятать решение

Ре­ше­ние.

Умно­жим обе части на  дробь: чис­ли­тель: 5, зна­ме­на­тель: 6 конец дроби , при­ве­дем обе части к од­но­му ос­но­ва­нию:

 левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x = дробь: чис­ли­тель: 16, зна­ме­на­тель: 45 конец дроби рав­но­силь­но левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x = дробь: чис­ли­тель: 5, зна­ме­на­тель: 6 конец дроби умно­жить на дробь: чис­ли­тель: 16, зна­ме­на­тель: 45 конец дроби рав­но­силь­но левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x = дробь: чис­ли­тель: 8, зна­ме­на­тель: 27 конец дроби рав­но­силь­но левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в кубе рав­но­силь­но x=3.

Пра­виль­ный ответ ука­зан под но­ме­ром 1.

Классификатор алгебры: 4\.1\. Урав­не­ния пер­вой и вто­рой сте­пе­ни от­но­си­тель­но по­ка­за­тель­ных функ­ций