Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 14869
1.  
i

Cокра­ти­те дробь:  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 70 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 30 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 35 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та конец дроби .

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та
4)  ко­рень из 2
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния a в сте­пе­ни левая круг­лая скоб­ка 12 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка a в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни 4   при a = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1) 8
2) 32
3) 4
4) 16
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 5 синус дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 12 конец дроби умно­жить на ко­си­нус дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 12 конец дроби .

1) 1
2) −0,5
3) 0,5
4) −1,25
4.  
i

Раз­ло­жи­те квад­рат­ный трех­член 4x в квад­ра­те плюс 9x плюс 2 на мно­жи­те­ли.

1)  левая круг­лая скоб­ка 4x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 4x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 4x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка
5.  
i

Из дан­ных пар чисел ука­жи­те ту, ко­то­рая яв­ля­ет­ся ре­ше­ни­ем урав­не­ния 6x минус 5y плюс 12 = 0.

1) (2; 1)
2) (3; −2)
3) (5; 6)
4) (0; 2,4)
6.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 16 минус 2x плюс 3 левая круг­лая скоб­ка y плюс 4 пра­вая круг­лая скоб­ка = 17,2 левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка минус 2 левая круг­лая скоб­ка y минус 5 пра­вая круг­лая скоб­ка минус 44 = 0. конец си­сте­мы .

1) (55; 33)
2) (−5; 3)
3) (5; 3)
4) (−55; 33)
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 3 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс 4 в сте­пе­ни левая круг­лая скоб­ка 4x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 2 конец дроби плюс дробь: чис­ли­тель: 3 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 3 конец дроби плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби минус дробь: чис­ли­тель: 256 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 256 конец дроби плюс C
2)  дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 2 конец дроби плюс дробь: чис­ли­тель: 3 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 3 конец дроби плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс дробь: чис­ли­тель: 256 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 256 конец дроби плюс C
3)  дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 2 конец дроби плюс дробь: чис­ли­тель: 3 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 3 конец дроби плюс 3 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс дробь: чис­ли­тель: 256 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 256 конец дроби плюс C
4)  дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 2 конец дроби плюс дробь: чис­ли­тель: 3 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 3 конец дроби минус 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 5 конец дроби плюс дробь: чис­ли­тель: 256 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 256 конец дроби плюс C
8.  
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 28 Пи , и его объем равен 28 Пи . Най­ди­те вы­со­ту ци­лин­дра.

1) 3
2) 3,5
3) 7
4) 14
9.  
i

Най­ди­те ре­ше­ние си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 4, зна­ме­на­тель: x конец дроби минус дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби боль­ше или равно 0, дробь: чис­ли­тель: 3 минус 2x, зна­ме­на­тель: x минус 2 конец дроби боль­ше 1. конец си­сте­мы .

1) (2;  4)
2) [1; 2]
3)  левая квад­рат­ная скоб­ка целая часть: 1, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3 ; 2 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка целая часть: 1, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3 ; 2 пра­вая круг­лая скоб­ка
10.  
i

Ре­ши­те урав­не­ние:  арк­ко­си­нус x= синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби .

1)  ко­си­нус 1
2) 0
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
4)  ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =5x левая круг­лая скоб­ка x в квад­ра­те плюс 4 пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 2;3 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 10x в квад­ра­те минус 57
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 10x в квад­ра­те
3)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби x в кубе плюс 10x в квад­ра­те минус 57
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 10x
12.  
i

Bыбе­ри­те урав­не­ние, ко­то­рое яв­ля­ет­ся квад­рат­ным урав­не­ни­ем с одной пе­ре­мен­ной

1) 5x плюс 3x в квад­ра­те = 8
2) 5x в сте­пе­ни 4 плюс 3x в квад­ра­те минус 18 = 0
3) 1,5x в квад­ра­те минус 8 плюс 25y в квад­ра­те = 0
4) 2x плюс 15 = 0
13.  
i

Сто­ро­ны тре­уголь­ни­ка равны 4 см, 6 см и 8 см. Най­ди­те сто­ро­ны по­доб­но­го ему тре­уголь­ни­ка, если ко­эф­фи­ци­ент по­до­бия равен 2. В от­ве­те ука­жи­те сумму длин сто­рон.

1) 32 см
2) 36 см
3) 30 см
4) 40 см
14.  
i

Най­ди­те наи­мень­шее целое число, удо­вле­тво­ря­ю­щее не­ра­вен­ству:  при­над­ле­жит t\limits_0 в сте­пе­ни t левая круг­лая скоб­ка 2x плюс 3 пра­вая круг­лая скоб­ка dx мень­ше или равно 4.

1) −5
2) 1
3) 4
4) −4
15.  
i

Ящик в форме пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да имеет квад­рат­ное дно. Вы­со­та ящика 80 см. Диа­го­наль бо­ко­вой грани равна 1 м, тогда сто­ро­на ос­но­ва­ния ящика равна

1) 0,5 м
2) 0,4 м
3) 0,45 м
4) 0,6 м
16.  
i

Най­ди­те про­из­ве­де­ние кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния x в квад­ра­те минус 5x минус 3=4 ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 5x плюс 9. конец ар­гу­мен­та

1) −27
2) −18
3) 12
4) 27
17.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: x плюс 1, зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка конец дроби боль­ше 0, ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те плюс 7 пра­вая круг­лая скоб­ка мень­ше ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 6x минус 1 пра­вая круг­лая скоб­ка . конец си­сте­мы .

1)  левая круг­лая скоб­ка 2; 4 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 4; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 0; 4 пра­вая квад­рат­ная скоб­ка
18.  
i

Вы­чис­ли­те объем фи­гу­ры, по­лу­ча­е­мой вра­ще­ни­ем во­круг оси Ox дуги кри­вой y = ко­си­нус x, x при­над­ле­жит левая квад­рат­ная скоб­ка 0; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
2)  Пи в кубе
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: Пи в квад­ра­те , зна­ме­на­тель: 4 конец дроби
19.  
i

Пра­виль­ный n-уголь­ник впи­сан в окруж­ность. Её ра­ди­ус со­став­ля­ет с одной из сто­рон n-уголь­ни­ка угол 54°. Най­ди­те n.

1) 6
2) 4
3) 5
4) 7
20.  
i

Между чис­ла­ми А = 6 и B= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби вставь­те по­ло­жи­тель­ное число С так, чтобы по­лу­чи­лось три по­сле­до­ва­тель­ных члена А, С и В гео­мет­ри­че­ской про­грес­сии. Число С равно

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4) 3
21.  
i

На пря­мой по­сле­до­ва­тель­но рас­по­ло­же­ны на рав­ном рас­сто­я­нии точки C, D, E, F и K. Най­ди­те ко­ор­ди­на­ты точки K, если D(−8; 3) и E(1; 5).

1) (11; 5)
2) (14; 8)
3) (19; 1)
4) (19; 9)
22.  
i

Упро­сти­те:  дробь: чис­ли­тель: левая круг­лая скоб­ка 3 a в квад­ра­те b в кубе пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 18 a b в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка конец дроби .

1) 0,6a в квад­ра­те
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби a в квад­ра­те
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби a в сте­пе­ни 4
4) 0,5a в кубе
23.  
i

Ре­ши­те урав­не­ние: 9 в сте­пе­ни левая круг­лая скоб­ка \log пра­вая круг­лая скоб­ка _9 левая круг­лая скоб­ка 4x минус 4 пра­вая круг­лая скоб­ка =x в квад­ра­те минус 1.

1) 3
2) 1
3) 0
4) 2
24.  
i

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство \ctg x боль­ше дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби .

1)  левая круг­лая скоб­ка Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
2)  левая круг­лая скоб­ка 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
3)  левая круг­лая скоб­ка Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
4)  левая круг­лая скоб­ка 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­си­нус x,x_0= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби .

1) y = минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби x плюс дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та Пи , зна­ме­на­тель: 3 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2) y = минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби x плюс дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та Пи , зна­ме­на­тель: 6 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3) y = дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби x плюс дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та Пи , зна­ме­на­тель: 6 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4) y = минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби x плюс дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та Пи , зна­ме­на­тель: 6 конец дроби
26.  
i

Чай­ный двор

По­су­да яв­ля­ет­ся то­ва­ром на­род­но­го по­треб­ле­ния и оце­ни­ва­ет­ся не толь­ко как пред­мет быта, но и как эле­мент де­ко­ра. Спрос на нее все­гда оста­ет­ся на до­ста­точ­но вы­со­ком уров­не по ряду при­чин. На се­го­дняш­ний день рынок пред­став­лен мно­го­об­ра­зи­ем то­ва­ров раз­лич­ных видов по­су­ды и це­но­вых ка­те­го­рий, что поз­во­ля­ет удо­вле­тво­рить любой спрос.

В ма­га­зи­не «Чай­ный двор» вы­став­ле­ны на про­да­жу раз­лич­ный ас­сор­ти­мент чай­ной по­су­ды на­чи­ная от ложки для чая, за­кан­чи­вая по­су­дой для чай­ных це­ре­мо­ний из раз­лич­ных ме­тал­лов и ма­те­ри­а­лов. По акции про­да­ва­лись 5 чашек, 8 блюд­цев, 7 ложек. Ма­ди­на ку­пи­ла домой ком­плект по­су­ды по акции.

Сколь­ки­ми спо­со­ба­ми Ма­ди­на может вы­брать в ма­га­зи­не ком­плект «чашка+блюд­це+ложка»?

1) 200
2) 240
3) 280
4) 300
27.  
i

Cемей­ная пара со­би­ра­ет­ся в по­езд­ку на по­ез­де. В со­ста­ве по­ез­да име­ют­ся сле­ду­ю­щие типы ва­го­нов:

1) CВ — купе на 2 че­ло­ве­ка;

2) Kупе — купе на 4 че­ло­ве­ка;

3) Плац­карт А — вагон на 36 че­ло­век;

4) Плац­карт В — вагон на 54 че­ло­ве­ка;

5) Oбщий вагон — вагон на 81 че­ло­век.

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в одном Купе.

1) 3
2) 16
3) 8
4) 12
28.  
i

Чай­ный двор

По­су­да яв­ля­ет­ся то­ва­ром на­род­но­го по­треб­ле­ния и оце­ни­ва­ет­ся не толь­ко как пред­мет быта, но и как эле­мент де­ко­ра. Спрос на нее все­гда оста­ет­ся на до­ста­точ­но вы­со­ком уров­не по ряду при­чин. На се­го­дняш­ний день рынок пред­став­лен мно­го­об­ра­зи­ем то­ва­ров раз­лич­ных видов по­су­ды и це­но­вых ка­те­го­рий, что поз­во­ля­ет удо­вле­тво­рить любой спрос.

В ма­га­зи­не «Чай­ный двор» вы­став­ле­ны на про­да­жу раз­лич­ный ас­сор­ти­мент чай­ной по­су­ды на­чи­ная от ложки для чая, за­кан­чи­вая по­су­дой для чай­ных це­ре­мо­ний из раз­лич­ных ме­тал­лов и ма­те­ри­а­лов. По акции про­да­ва­лись 5 чашек, 8 блюд­цев, 7 ложек. Ма­ди­на ку­пи­ла домой ком­плект по­су­ды по акции.

Сколь­ки­ми спо­со­ба­ми Ма­ди­на может вы­брать в ма­га­зи­не из дан­ных то­ва­ров ком­плект из двух раз­ных пред­ме­тов?

1) 131
2) 125
3) 132
4) 119
29.  
i

Cемей­ная пара со­би­ра­ет­ся в по­езд­ку на по­ез­де. В со­ста­ве по­ез­да име­ют­ся сле­ду­ю­щие типы ва­го­нов:

1) CВ — купе на 2 че­ло­ве­ка;

2) Kупе — купе на 4 че­ло­ве­ка;

3) Плац­карт А — вагон на 36 че­ло­век;

4) Плац­карт В — вагон на 54 че­ло­ве­ка;

5) Oбщий вагон — вагон на 81 че­ло­век.

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в ва­го­не типа Плац­карт А.

1) 2120
2) 680
3) 890
4) 1260
30.  
i

Cемей­ная пара со­би­ра­ет­ся в по­езд­ку на по­ез­де. В со­ста­ве по­ез­да име­ют­ся сле­ду­ю­щие типы ва­го­нов:

1) CВ — купе на 2 че­ло­ве­ка;

2) Kупе — купе на 4 че­ло­ве­ка;

3) Плац­карт А — вагон на 36 че­ло­век;

4) Плац­карт В — вагон на 54 че­ло­ве­ка;

5) Oбщий вагон — вагон на 81 че­ло­век.

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в общем ва­го­не.

1) 6480
2) 5620
3) 2862
4) 1260

Функ­ция за­да­на урав­не­ни­ем y = 5 в сте­пе­ни x минус 5. Уста­но­ви­те со­от­вет­ствия:

A) Нуль функ­ции

Б) Мно­же­ство зна­че­ний функ­ции

1)  левая круг­лая скоб­ка минус 5; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка

2)  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка

3) 1

4) 0

32.  
i

Шар впи­сан в конус, вы­со­та ко­то­ро­го равна 40, а объем  — 1080π. Уста­но­ви­те со­от­вет­ствие между ра­ди­у­сом ос­но­ва­ния ко­ну­са, ра­ди­у­сом шара и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Ра­ди­ус ос­но­ва­ния ко­ну­са

Б) Ра­ди­ус шара

1) 9

2)  дробь: чис­ли­тель: 36, зна­ме­на­тель: 5 конец дроби

3) 12

4)  дробь: чис­ли­тель: 72, зна­ме­на­тель: 5 конец дроби

33.  
i

Най­ди­те два на­ту­раль­ных числа a и b, если из­вест­но, что от­но­ше­ние чисел a и b равно 5, а от­но­ше­ние раз­но­сти их квад­ра­тов этих чисел к их сумме равно 8.

A) Число a при­над­ле­жит про­ме­жут­ку

Б) Число b при­над­ле­жит про­ме­жут­ку

1) (9; 12)

2) [4; 6)

3) (1; 2]

4) (7; 9)

34.  
i

Даны урав­не­ния  дробь: чис­ли­тель: x в квад­ра­те минус 6x плюс 5, зна­ме­на­тель: x минус 1 конец дроби = 0 и  левая круг­лая скоб­ка x в квад­ра­те минус 4 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та = 0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 0, 3, 4

2) 5, 2, 8

3) −1, 0, 3

4) 5, 1, 2

35.  
i

Гео­мет­ри­че­ская про­грес­сия  левая круг­лая скоб­ка b_n пра­вая круг­лая скоб­ка за­да­на фор­му­лой n-го члена  b_n = 2 умно­жить на левая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка n минус 1 пра­вая круг­лая скоб­ка . Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b4

Б) S3

1) 14

2) −54

3) 162

4) 3

36.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: \left|x в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та | плюс |2 x y| пра­вая круг­лая скоб­ка при x = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби и y = дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби .

1)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 7 конец дроби
3) \pm ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби конец ар­гу­мен­та
4) \pm ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 5, зна­ме­на­тель: 9 конец дроби конец ар­гу­мен­та
5)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
6) \pm дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 4 конец дроби ко­си­нус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 6 конец дроби тан­генс дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 3 конец дроби \ctg дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби .

1)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , зна­ме­на­тель: 12 конец дроби
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , зна­ме­на­тель: 12 конец дроби
3)  минус дробь: чис­ли­тель: 3 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
5)  дробь: чис­ли­тель: 3 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
6)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
38.  
i

Най­ди­те зна­ме­на­тель гео­мет­ри­че­ской про­грес­сии, если сумма ее тре­тье­го и чет­вер­то­го чле­нов вдвое боль­ше суммы чет­вер­то­го и пя­то­го чле­нов.

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
2) −1
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
4) 0
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6) 1
39.  
i

Ре­ши­те си­сте­му по­ка­за­тель­но-сте­пен­ных урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка ко­рень \tfracx4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2x минус y конец ар­гу­мен­та =2, новая стро­ка левая круг­лая скоб­ка 2x минус y пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка \tfracx пра­вая круг­лая скоб­ка 4=1000. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 12, зна­ме­на­тель: 16 конец дроби
5)  дробь: чис­ли­тель: 16, зна­ме­на­тель: 12 конец дроби
6)  дробь: чис­ли­тель: 7, зна­ме­на­тель: 4 конец дроби
40.  
i

Вы­бе­ри­те из ни­же­пе­ре­чис­лен­ных от­ве­тов де­ли­те­ли числа, рав­но­го зна­че­нию пло­ща­ди бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы, опи­сан­ной около ци­лин­дра, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен  ко­рень из 3 , а вы­со­та равна 3.

1) 12
2) 27
3) 3
4) 9
5) 24
6) 17