Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 13396
1.  
i

Вы­пол­ни­те дей­ствия с ра­ди­ка­ла­ми  ко­рень из: на­ча­ло ар­гу­мен­та: 32 конец ар­гу­мен­та минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: целая часть: 3, дроб­ная часть: чис­ли­тель: 5, зна­ме­на­тель: 9 конец ар­гу­мен­та .

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 32 конец ар­гу­мен­та
2) 1
3) 2
4) 0
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка 2x плюс 3y пра­вая круг­лая скоб­ка в квад­ра­те минус 3x левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби x плюс 4y пра­вая круг­лая скоб­ка при x= минус 1,038, y= ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

1) 27
2) 18
3) 9
4) 36
3.  
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: ко­си­нус 42 гра­ду­сов плюс синус в квад­ра­те 21 гра­ду­сов , зна­ме­на­тель: ко­си­нус в квад­ра­те 21 гра­ду­сов конец дроби плюс 1.

1)  ко­си­нус 21 гра­ду­сов
2) 2
3)  синус 42 гра­ду­сов
4) 0
4.  
i

За­ме­ни­те знак * од­но­чле­ном, так чтобы по­лу­чен­ный трёхчлен 6,25 q в квад­ра­те минус 15 q g плюс * можно было пред­ста­вить в виде квад­ра­та дву­чле­на

1) 9g2
2) 5g2
3) 9g
4) 3g2
5.  
i

Най­ди­те корни урав­не­ния: |2x минус 6| = 10.

1) −10; 4
2) −2; 8
3) −8; 2
4) −2; 6
6.  
i

Най­ди­те сумму  левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка плюс 81 в сте­пе­ни x = 82,3y в квад­ра­те минус x = 2, конец си­сте­мы . при­чем y < 0.

1) 3
2) 1
3) 0
4) 2
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка 2 ко­си­нус 2x минус 3 синус 3x пра­вая круг­лая скоб­ка dx.

1)  ко­си­нус 2x плюс синус 3x плюс C
2)  синус 2x минус ко­си­нус 3x плюс C
3)  синус x плюс ко­си­нус x плюс C
4)  синус 2x плюс ко­си­нус 3x плюс C
8.  
i

Pас­сто­я­ние от цен­тра шара до плос­ко­сти се­че­ния равно 5 ко­рень из 3 . Ра­ди­ус шара 10, тогда ра­ди­ус се­че­ния шара равен

1) 4
2) 5
3) 3 ко­рень из 3
4) 8
9.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний синус 2x боль­ше 0, ко­си­нус 2x мень­ше или равно дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби . конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
2)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи n; Пи плюс 2 Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи n пра­вая квад­рат­ная скоб­ка , n при­над­ле­жит Z
10.  
i

Ре­ши­те урав­не­ние  синус в квад­ра­те x минус ко­си­нус в квад­ра­те x= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1) \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс Пи k, k при­над­ле­жит Z
2) нет ре­ше­ний
3) \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи k, k при­над­ле­жит Z
4) \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k, k при­над­ле­жит Z
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 левая круг­лая скоб­ка 1 плюс 2x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 10;8 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби x в кубе плюс дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби x в квад­ра­те минус 3x
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби x в кубе минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби x в квад­ра­те минус 3x плюс дробь: чис­ли­тель: 2864, зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби x в кубе плюс дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби x в квад­ра­те минус 3x минус дробь: чис­ли­тель: 2864, зна­ме­на­тель: 3 конец дроби
4)  минус 5x в квад­ра­те минус 6x плюс дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби x в кубе плюс дробь: чис­ли­тель: 5344, зна­ме­на­тель: 3 конец дроби
12.  
i

Ре­ши­те не­ра­вен­ство:  ко­си­нус x мень­ше или равно 1.

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи n ; Пи плюс 2 Пи n пра­вая круг­лая скоб­ка ,n при­над­ле­жит Z
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи n ; Пи плюс 2 Пи n пра­вая квад­рат­ная скоб­ка ,n при­над­ле­жит Z
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи n ; Пи плюс 2 Пи n пра­вая круг­лая скоб­ка ,n при­над­ле­жит Z
13.  
i

Пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка с ка­те­та­ми 6 и 9 равна?

1) 48
2) 27
3) 54
4) 33
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от минус 2 до минус 1, левая круг­лая скоб­ка 6x в квад­ра­те плюс 2x минус 10 пра­вая круг­лая скоб­ка dx.

1) 0
2) −4
3) 8
4) 1
15.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де бо­ко­вое ребро равно 4 см, а сто­ро­на ос­но­ва­ния — 6 см. Най­ди­те объём пи­ра­ми­ды.

1) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
2) 7 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
3) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
4) 8 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
16.  
i

Про­из­ве­де­ние кор­ней урав­не­ния 1,5 в сте­пе­ни левая круг­лая скоб­ка 2 x в квад­ра­те плюс 1 пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка дробь: чис­ли­тель: 8, зна­ме­на­тель: 27 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
17.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 2 x плюс ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка y минус 1 пра­вая круг­лая скоб­ка =3,y=2x плюс 1. конец си­сте­мы .

1) (2; 4)
2) (4; 3)
3) (3; 1)
4) (2; 5)
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс 2x минус 1,y= минус 4x минус 10, минус 4 мень­ше или равно x мень­ше или равно 0.

1)  дробь: чис­ли­тель: 28, зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: 28, зна­ме­на­тель: 5 конец дроби
3)  дробь: чис­ли­тель: 25, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 29, зна­ме­на­тель: 3 конец дроби
19.  
i

Точка пе­ре­се­че­ния бис­сек­трис двух углов па­рал­ле­ло­грам­ма, при-ле­жа­щих к одной сто­ро­не, при­над­ле­жит про­ти­во­по­лож­ной сто­ро­не. Мень­шая сто­ро­на па­рал­ле­ло­грам­ма равна 5. Най­ди­те его боль­шую сто­ро­ну.

1) 10
2) 5
3) 12
4) 20
20.  
i

Hай­ди­те q дан­ной гео­мет­ри­че­ской про­грес­сии: 54; 36;...

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
21.  
i

Най­ди­те |\veca плюс \vecb|:

1) 4
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 36 конец ар­гу­мен­та
3) 3
4) 5
22.  
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: x плюс y минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: xy конец ар­гу­мен­та , зна­ме­на­тель: ко­рень из y минус ко­рень из x конец дроби .

1)  левая круг­лая скоб­ка ко­рень из y плюс ко­рень из x пра­вая круг­лая скоб­ка в квад­ра­те
2)  левая круг­лая скоб­ка ко­рень из y минус ко­рень из x пра­вая круг­лая скоб­ка в квад­ра­те
3)  ко­рень из y плюс ко­рень из x
4)  ко­рень из y минус ко­рень из x
23.  
i

Ре­ши­те урав­не­ние \log _5 дробь: чис­ли­тель: 2 плюс x, зна­ме­на­тель: 10 конец дроби =\log _5 дробь: чис­ли­тель: 2, зна­ме­на­тель: x плюс 1 конец дроби .

1) 6
2) 3
3) 2
4) −6
24.  
i

Ре­ши­те не­ра­вен­ство \log _4 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка боль­ше или равно 0,5.

1)  левая круг­лая скоб­ка минус 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;0 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 3, зна­ме­на­тель: 1 минус 4x конец дроби ,x_0=1.

1) y = дробь: чис­ли­тель: 5x, зна­ме­на­тель: 3 конец дроби минус дробь: чис­ли­тель: 7, зна­ме­на­тель: 3 конец дроби
2) y = дробь: чис­ли­тель: 4x, зна­ме­на­тель: 3 конец дроби минус дробь: чис­ли­тель: 7, зна­ме­на­тель: 3 конец дроби
3) y = дробь: чис­ли­тель: 4x, зна­ме­на­тель: 3 конец дроби плюс 2
4) y = минус дробь: чис­ли­тель: 4x, зна­ме­на­тель: 3 конец дроби минус дробь: чис­ли­тель: 7, зна­ме­на­тель: 3 конец дроби
26.  
i

Перед отъ­ез­дом в Япо­нию, Самат при­об­рел для хра­не­ния важ­ных до­ку­мен­тов и цен­ных вещей ко­до­вый сейф с ше­сти­знач­ным кодом, со­сто­я­щим из цифр 1, 2, 3 и букв M, N, K.

Сколь­ко ше­сти­знач­ных кодов для от­кры­ва­ния сейфа можно со­ста­вить из дан­ных цифр и букв?

1) 120
2) 36
3) 720
4) 5040
27.  
i

Hа столе лежат кар­точ­ки, на ко­то­рых за­пи­са­ны числа 1; 2; 3; 4; 5. Марат на­у­гад взял три из них.

Kакова ве­ро­ят­ность, что сумма чисел, за­пи­сан­ных на кар­точ­ках, ко­то­рые вы­тя­нул Марат, мень­ше 10?

1) 0,9
2) 0,1
3) 0,3
4) 0,6
28.  
i

Перед отъ­ез­дом в Япо­нию, Самат при­об­рел для хра­не­ния важ­ных до­ку­мен­тов и цен­ных вещей ко­до­вый сейф с ше­сти­знач­ным кодом, со­сто­я­щим из цифр 1, 2, 3 и букв M, N, K.

Сколь­ко ва­ри­ан­тов воз­мож­ны при усло­вии, что цифра 1 не долж­на быть пер­вой?

1) 120
2) 400
3) 240
4) 600
29.  
i

Hа столе лежат кар­точ­ки, на ко­то­рых за­пи­са­ны числа 1; 2; 3; 4; 5. Марат на­у­гад взял три из них.

Kакова ве­ро­ят­ность того, что Марат смо­жет по­стро­ить пря­мо­уголь­ный тре­уголь­ник, сто­ро­ны ко­то­ро­го равны чис­лам, за­пи­сан­ных на вы­бран­ных им кар­точ­ках?

1) 0,6
2) 0,1
3) 0,5
4) 0,3
30.  
i

Hа столе лежат кар­точ­ки, на ко­то­рых за­пи­са­ны числа 1; 2; 3; 4; 5. Марат на­у­гад взял три из них.

Kакова ве­ро­ят­ность, что Марат смо­жет по­стро­ить тре­уголь­ник, сто­ро­ны ко­то­ро­го равны чис­лам, за­пи­сан­ным на вы­тя­ну­тых им кар­точ­ках?

1) 0,7
2) 0,3
3) 0,1
4) 0,6
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = синус x плюс 2. Уста­но­ви­те со­от­вет­ствие между наи­боль­шим и наи­мень­шим зна­че­ни­я­ми функ­ции и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Наи­боль­шее зна­че­ние функ­ции

Б) Наи­мень­шее зна­че­ние функ­ции

1) 3

2) 2

3) −1

4) 1

32.  
i

Ра­ди­ус впи­сан­ной в пра­виль­ный тре­уголь­ник окруж­но­сти равен 10. Уста­но­ви­те со­от­вет­ствие между дли­ной сто­ро­ны тре­уголь­ни­ка, пло­ща­дью тре­уголь­ни­ка и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина сто­ро­ны тре­уголь­ни­ка

Б) Пло­щадь тре­уголь­ни­ка

1) 300 ко­рень из 3

2) 60 ко­рень из 3

3) 20 ко­рень из 3

4) 1200 ко­рень из 3

33.  
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка 3x минус 4 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x2, ко­эф­фи­ци­ен­том при x и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x2

Б) Ко­эф­фи­ци­ент при x

1) [20; 30)

2) (−25; −20)

3) (−10; 10)

4) [40; 42]

34.  
i

Даны урав­не­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: 6 минус x конец ар­гу­мен­та и x в квад­ра­те минус 9x плюс 14 = 0. Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния, но не яв­ля­ет­ся кор­нем пер­во­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) 2

2) 1

3) 4

4) 7

35.  
i

Ариф­ме­ти­че­ская про­грес­сия (an) за­да­ет­ся фор­му­лой n⁠-⁠го члена: a_n=5 минус 3,6 n. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) a6

Б) a_4 минус a_2

1) −10,8

2) −3,6

3) −7,2

4) −16,6

36.  
i

Среди на­ту­раль­ных чисел от 32 до 42 вклю­чи­тель­но вы­бе­ри­те те числа, ко­то­рые имеют боль­ше 5 де­ли­те­лей (кроме 1 и са­мо­го числа).

1) 33
2) 42
3) 32
4) 40
5) 34
6) 36
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­си­нус 76 гра­ду­сов ко­си­нус 16 гра­ду­сов плюс синус 76 гра­ду­сов синус 16 гра­ду­сов .

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3) 0
4) 1
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6) 2
38.  
i

Сумма пер­во­го, чет­вер­то­го и три­на­дца­то­го чле­нов ариф­ме­ти­че­ской про­грес­сии равна –23. Най­ди­те ше­стой ее член и сумму пер­вых 11 чле­нов.

1)  минус дробь: чис­ли­тель: 187, зна­ме­на­тель: 3 конец дроби
2)  минус дробь: чис­ли­тель: 263, зна­ме­на­тель: 3 конец дроби
3)  минус дробь: чис­ли­тель: 230, зна­ме­на­тель: 3 конец дроби
4)  минус дробь: чис­ли­тель: 23, зна­ме­на­тель: 3 конец дроби
5)  дробь: чис­ли­тель: 26, зна­ме­на­тель: 3 конец дроби
6)  минус дробь: чис­ли­тель: 253, зна­ме­на­тель: 3 конец дроби
39.  
i

Ре­ши­те си­сте­му, со­дер­жа­щую ир­ра­ци­о­наль­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка ко­рень из: на­ча­ло ар­гу­мен­та: x минус y плюс 5 конец ар­гу­мен­та =3, новая стро­ка ко­рень из: на­ча­ло ар­гу­мен­та: x плюс y минус 5 конец ар­гу­мен­та = минус 2x плюс 11. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби .

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 9 конец ар­гу­мен­та
2) 5
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби
4) 3
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та
6)  ко­рень из: на­ча­ло ар­гу­мен­та: 16 конец ар­гу­мен­та
40.  
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де ABCDF все ребра равны 1. Най­ди­те зна­че­ние угла между реб­ром FD и плос­ко­стью ос­но­ва­ния.

1) 45°
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
5) 60°
6)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби