Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Задания Д15 A15. Задания реальной версии ЕНТ 2021 года на позиции 15

К окруж­но­сти про­ве­де­на се­ку­щая CA. Тре­уголь­ник BOE рав­но­сто­рон­ний, CA = 12. Длина ка­са­тель­ной CE равна

1) 4 ко­рень из 2
2) 3 ко­рень из 5
3) 6
4) 4
5) 4 ко­рень из 3
2.  
i

Опре­де­ли­те ка­ко­му не­ра­вен­ству со­от­вет­ству­ет дан­ное изоб­ра­же­ние на ри­сун­ке.

1) y мень­ше x минус 3
2) y боль­ше x минус 4
3) y мень­ше x плюс 3
4) y боль­ше x плюс 3
5) y боль­ше 2x плюс 3
3.  
i

Pешите не­ра­вен­ство: 4 левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка плюс 5x боль­ше или равно 3x.

1)  левая квад­рат­ная скоб­ка минус 2; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка 2; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая квад­рат­ная скоб­ка
4.  
i

Oбла­стью опре­де­ле­ния функ­ции y = ко­рень из: на­ча­ло ар­гу­мен­та: |2x минус 3| конец ар­гу­мен­та яв­ля­ет­ся чис­ло­вой про­ме­жу­ток ...

1)  левая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
1) 40
2) 48
3) 24 ко­рень из 5
4) 12 ко­рень из 5
5) 48 ко­рень из 5
6.  
i

Внут­рен­ний угол пра­виль­но­го мно­го­уголь­ни­ка равен 172°. Ко­ли­че­ство сто­рон дан­но­го мно­го­уголь­ни­ка равно

1) 24
2) 45
3) 18
4) 36
5) 40
7.  
i

Из­вест­но, что  бета минус альфа = 40 гра­ду­сов . От­но­ше­ние  дробь: чис­ли­тель: бета , зна­ме­на­тель: альфа конец дроби равно:

1) 1,6
2) 3,2
3) 2,4
4) 1,8
5) 2,6
1) 100°
2) 140°
3) 138°
4) 124°
5) 155°
1)  дробь: чис­ли­тель: 13, зна­ме­на­тель: 15 конец дроби
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 15 конец дроби
3)  дробь: чис­ли­тель: 14, зна­ме­на­тель: 15 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 13 конец дроби
5)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 14 конец дроби
10.  
i

Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров \veca плюс \vecb и \veca минус \vecb, если из­вест­но, что |\veca|=3 и  |\vecb|=2.

1) 2
2) 3
3) 1
4) 4
5) 5
11.  
i

Най­ди­те угол В тре­уголь­ни­ка АВС, если А(1; 1), В(4; 1) и С(4; 5).

1) 90°
2) 60°
3) 135°
4) 120°
5) 30°
12.  
i

К окруж­но­сти про­ве­де­на се­ку­щая СА. Тре­уголь­ник ВОЕ рав­но­сто­рон­ний с пе­ри­мет­ром 18. Длина ка­са­тель­ной СЕ равна

1) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2) 8
3) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4) 5
5) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
13.  
i

В окруж­ность впи­сан тре­уголь­ник. Вер­ши­ны тре­уголь­ни­ка раз­би­ва­ют окруж­ность на дуги в от­но­ше­нии 5 : 6 : 7. Раз­ность боль­ше­го и мень­ше­го угла тре­уголь­ни­ка равна

1) 10°
2) 15°
3) 20°
4) 40°
5) 18°
14.  
i

Най­ди­те угол между век­то­ра­ми \veca=\overrightarrowA B и \vecb=\overrightarrowA C, если A(−1; 0), B(1; 2), C(2; 0).

1) 60°
2) 90°
3)  арк­ко­си­нус 0,65
4) 45°
5)  арк­ко­си­нус 0,25
15.  
i

Най­ди­те ко­ор­ди­на­ты точки, сим­мет­рич­ной точке с ко­ор­ди­на­та­ми (4; −9) от­но­си­тель­но оси ор­ди­нат.

1) (5; 9)
2) (4; 9)
3) (−4; 9)
4) (−4; −9)
5) (5; −9)
1) 36
2) 19
3) 18
4) 12
5) 24
17.  
i

Cто­ро­ны тре­уголь­ни­ка равны 4 см, 5 см, 6 см. Най­ди­те про­ек­цию сред­ней сто­ро­ны на боль­шую.

1) 3,75
2) 2,75
3) 1,75
4) 3,25
5) 1,25
18.  
i

Ре­ши­те не­ра­вен­ство: 2 синус в квад­ра­те x плюс синус x плюс 1 боль­ше или равно 0.

1) нет ре­ше­ний
2)  левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи n ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
3)  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи n ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи n пра­вая квад­рат­ная скоб­ка , n при­над­ле­жит Z
4)  левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи n ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
5)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
19.  
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 4, зна­ме­на­тель: 2x минус 9 конец дроби боль­ше 0.

1) (−4; 4)
2)  левая круг­лая скоб­ка минус 4,5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 4,5 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 4,5 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка 4,5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
20.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка 2 x минус 1 пра­вая круг­лая скоб­ка умно­жить на 27 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка =3, левая круг­лая скоб­ка 5 x минус y пра­вая круг­лая скоб­ка в квад­ра­те =36. конец си­сте­мы .

1) любое число
2) пу­стое мно­же­ство
3) (1; −1); (−0,8; 2)
4) (1; −1); (1; 0)
5) (−0,8; 2); (−1; 0)
21.  
i

Опре­де­ли­те ка­ко­му не­ра­вен­ству со­от­вет­ству­ет дан­ное изоб­ра­же­ние на ри­сун­ке.

1) y мень­ше x минус 3
2) y боль­ше x минус 4
3) y мень­ше x плюс 3
4) y боль­ше x плюс 3
22.  
i

Oбла­стью опре­де­ле­ния функ­ции y = ко­рень из: на­ча­ло ар­гу­мен­та: |2x минус 3| конец ар­гу­мен­та яв­ля­ет­ся чис­ло­вой про­ме­жу­ток ...

1)  левая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
23.  
i

Ре­ши­те не­ра­вен­ство: 2 синус в квад­ра­те x плюс синус x плюс 1 боль­ше или равно 0.

1) нет ре­ше­ний
2)  левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи n ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
3)  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи n ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи n пра­вая квад­рат­ная скоб­ка , n при­над­ле­жит Z
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка