Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 35805
1.  
i

Вы­чис­ли­те:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка 9 плюс ло­га­рифм по ос­но­ва­нию 2 16.

1) 4
2) 6
3) 1
4) 2
2.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: левая круг­лая скоб­ка a минус 2b пра­вая круг­лая скоб­ка в квад­ра­те минус 4b в квад­ра­те , зна­ме­на­тель: a конец дроби   и най­ди­те его зна­че­ние при a=0,3; b= минус 0,35.

1) 1,6
2) 2
3) 1,2
4) 1,7
3.  
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: ко­си­нус 50 гра­ду­сов плюс синус в квад­ра­те 25 гра­ду­сов , зна­ме­на­тель: ко­си­нус в квад­ра­те 25 гра­ду­сов конец дроби плюс 1.

1)  синус 25 гра­ду­сов плюс 1
2)  ко­си­нус 25 гра­ду­сов
3) 0
4) 2
4.  
i

Ука­жи­те вер­ное раз­ло­же­ние на мно­жи­те­ли мно­го­чле­на 2ab плюс 3b в квад­ра­те плюс 2a плюс 3b.

1)  левая круг­лая скоб­ка 2a плюс 3b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс 1 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 2a плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка b плюс 3 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка a плюс 3b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка b плюс 1 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 2a плюс 3b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка b плюс 1 пра­вая круг­лая скоб­ка
5.  
i

Ре­шить урав­не­ние: 16x в квад­ра­те минус 9 = 0.

1) 4 и −4
2) 3 и −3
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби и  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 16 конец дроби и  минус дробь: чис­ли­тель: 9, зна­ме­на­тель: 16 конец дроби
6.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 3x минус 5y =23,2x плюс 3y=9. конец си­сте­мы .

1) (6; 1)
2) (6; −1)
3) (−6; −1)
4) (2; −6)
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка синус x ко­си­нус 2x плюс синус 2x ко­си­нус x пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ко­си­нус 3x
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби синус 3x
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ко­си­нус 3x
4)  минус ко­си­нус 3x
8.  
i

Пусть O и O1  — цен­тры ос­но­ва­ний ци­лин­дра, изоб­ра­жен­но­го на ри­сун­ке. Тогда об­ра­зу­ю­щей ци­лин­дра яв­ля­ет­ся от­ре­зок:

1) DB
2) DC
3) OO1
4) AD
9.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 9 плюс 2x боль­ше 7 плюс x, 2 минус 3x боль­ше или равно 2x минус 8. конец си­сте­мы .

1) [−2; 2)
2)  левая круг­лая скоб­ка 2; плюс бес­ко­неч­ность пра­вая квад­рат­ная скоб­ка
3) [−2; 3)
4) (−2; 2]
10.  
i

Ре­ши­те урав­не­ние:  арк­ко­си­нус x= синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби .

1)  ко­си­нус 1
2) 0
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
4)  ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 3x в кубе плюс 2x в квад­ра­те , зна­ме­на­тель: x в квад­ра­те конец дроби , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 1;3 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби x в квад­ра­те плюс 2x
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби x в квад­ра­те минус 2x плюс дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби x в квад­ра­те плюс 2x плюс дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби x в кубе минус 2x плюс дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби
12.  
i

Зна­че­ние пе­ре­мен­ной х, при ко­то­ром верно не­ра­вен­ство:  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби мень­ше x мень­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби 10
3)  дробь: чис­ли­тель: 9, зна­ме­на­тель: конец дроби 10
4)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби
13.  
i

Най­ди­те угол В тре­уголь­ни­ка АВС, если А(1; 1), В(4; 1) и С(4; 5).

1) 90°
2) 60°
3) 135°
4) 120°
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 4 до 5, левая круг­лая скоб­ка 3x в квад­ра­те минус 2x пра­вая круг­лая скоб­ка dx.

1) 12
2) 24
3) 40
4) 52
15.  
i

Ос­но­ва­ни­ем пра­виль­ной тре­уголь­ной пи­ра­ми­ды яв­ля­ет­ся рав­но­сто­рон­ний тре­уголь­ник со сто­ро­ной 6 см. Вы­со­та пи­ра­ми­ды равна 9 см. Най­ди­те объем пи­ра­ми­ды.

1) 36 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см3
2) 36 см3
3) 54 см3
4) 27 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см3
16.  
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та =2.

1) 2
2) 0
3) 3
4) 1
17.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка x в квад­ра­те боль­ше или равно ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка 75 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка 3, 2 левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка боль­ше 4. конец си­сте­мы .

1) [5; 15)
2) [2; 7]
3)  левая квад­рат­ная скоб­ка 15; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4) (5; 15]
18.  
i

Пло­щадь фи­гу­ры, огра­ни­чен­ной гра­фи­ка­ми функ­ций y=x в квад­ра­те минус 1 и y=x плюс 1 равна

1) 10,5
2) 5
3) 7
4) 4,5
19.  
i

Окруж­ность ра­ди­у­са 4 впи­са­на в пря­мо­уголь­ную тра­пе­цию с тупым углом 150°. Пло­щадь тра­пе­ции равна

1) 64
2) 35
3) 96
4) 56
20.  
i

Пер­вый член ариф­ме­ти­че­ской про­грес­сии равен 8, раз­ность про­грес­сии равна 3. Най­ди­те a25.

1) 77
2) 72
3) 85
4) 80
21.  
i

Ис­поль­зуя дан­ные ри­сун­ка най­ди­те сумму век­то­ров \overrightarrowC_1 B_1 плюс \overrightarrowC D плюс \overrightarrowA C_1.

1) \overrightarrowA D
2) \overrightarrowA_1 B_1
3) \overrightarrowB C_1
4) \overrightarrowB B_1
22.  
i

Hеко­то­рое дву­знач­ное число раз­де­ли­ли на раз­ность его цифр. Какое вы­ра­же­ние удо­вле­тво­ря­ет дан­но­му усло­вию?

1)  дробь: чис­ли­тель: 10 a плюс b, зна­ме­на­тель: a плюс b конец дроби
2)  дробь: чис­ли­тель: a минус b, зна­ме­на­тель: a плюс b конец дроби
3)  дробь: чис­ли­тель: 10 a минус b, зна­ме­на­тель: a минус b конец дроби
4)  дробь: чис­ли­тель: 10 a плюс b, зна­ме­на­тель: a минус b конец дроби
23.  
i

Ре­ши­те урав­не­ние: 4 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка 2x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2x минус 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка = 2 ко­рень 3 сте­пе­ни из 2 .

1) 4
2) 3
3) 8
4) 9
24.  
i

Ре­ши­те не­ра­вен­ство  ко­рень из: на­ча­ло ар­гу­мен­та: 6x минус 5 конец ар­гу­мен­та боль­ше минус ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та .

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 5, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка .
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби ;\; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка .
3) нет ре­ше­ний
4)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 6 конец дроби ;\; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка .
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 2, зна­ме­на­тель: x в квад­ра­те минус 3x конец дроби ,x_0=4.

1) y = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби x плюс 3
2) y = минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 8 конец дроби x плюс 3
3) y = минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 8 конец дроби x плюс 1
4) y = минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 8 конец дроби x плюс 3
26.  
i

Торт в форме ци­лин­дра. Вы­со­та торта 20 см. Диа­метр 30 см. Сред­няя плот­ность торта 0,4 г/см3.

Чтобы раз­ре­зать торт про­ве­ли пять диа­мет­ров и по­лу­чи­ли?

1) 12 ку­соч­ков
2) 6 ку­соч­ков
3) 10 ку­соч­ков
4) 9 ку­соч­ков
27.  
i

В ка­би­не­те ма­те­ма­ти­ки име­ет­ся шкаф с тремя пол­ка­ми для мо­де­лей объ­ем­ных раз­но­цвет­ных фигур — пи­ра­мид, шара, па­рал­ле­ле­пи­пе­да, ко­ну­са, приз­мы, тет­ра­эд­ра, ци­лин­дра общим ко­ли­че­ством 14 штук (по две мо­де­ли каж­до­го вида).

Учи­тель рас­ста­вил на одной полке шкафа по одной мо­де­ли фигур каж­до­го вида. Рядом сто­я­щая уче­ни­ца за­ме­ти­ла, что рас­ста­вить эти фи­гу­ры на полке можно в раз­лич­ном по­ряд­ке. Сколь­ко таких ва­ри­ан­тов раз­ме­ще­ния су­ще­ству­ет?

1) 120
2) 320
3) 5040
4) 1400
28.  
i

Cемей­ная пара со­би­ра­ет­ся в по­езд­ку на по­ез­де. В со­ста­ве по­ез­да име­ют­ся сле­ду­ю­щие типы ва­го­нов:

1) CВ — купе на 2 че­ло­ве­ка;

2) Kупе — купе на 4 че­ло­ве­ка;

3) Плац­карт А — вагон на 36 че­ло­век;

4) Плац­карт В — вагон на 54 че­ло­ве­ка;

5) Oбщий вагон — вагон на 81 че­ло­век.

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в ва­го­не типа Плац­карт B.

1) 812
2) 1260
3) 3072
4) 2862
29.  
i

Пи­ра­мид­ка — это вто­рая по по­пу­ляр­но­сти ме­ха­ни­че­ская го­ло­во­лом­ка в мире. Она имеет вид тет­ра­эд­ра, у ко­то­ро­го грани раз­де­ле­ны на 9 рав­но­сто­рон­них тре­уголь­ни­ков со сто­ро­ной 3 см. Все грани Пи­ра­мид­ки раз­но­го цвета. Меф­ферт изоб­рел Пи­ра­мид­ку в 1971 г — почти на 10 лет рань­ше, чем Эрно Рубик при­ду­мал свой зна­ме­ни­тый кубик. Но толь­ко после успе­ха ку­би­ка Ру­би­ка Меф­ферт решил за­па­тен­то­вать свое изоб­ре­те­ние. Эле­мен­ты пи­ра­мид­ки Меф­фер­та: А — «угол­ки» (имеют 3 цвет­ные грани), В — «ребра» (имеют 2 цвет­ные грани), С — «ра­ди­а­то­ры» (имеют 1 цвет­ную грань).

A

B

C

Kакой вы­со­ты долж­на быть упа­ков­ка для Пи­ра­мид­ки?

1) 3 ко­рень из 3 см
2) 5 ко­рень из 6 см
3) 3 ко­рень из 2 см
4) 3 ко­рень из 6 см
30.  
i

В ка­би­не­те ма­те­ма­ти­ки име­ет­ся шкаф с тремя пол­ка­ми для мо­де­лей объ­ем­ных раз­но­цвет­ных фигур — пи­ра­мид, шара, па­рал­ле­ле­пи­пе­да, ко­ну­са, приз­мы, тет­ра­эд­ра, ци­лин­дра общим ко­ли­че­ством 14 штук (по две мо­де­ли каж­до­го вида).

Ка­ко­ва ве­ро­ят­ность раз­ме­ще­ния на пер­вой полке двух тел вра­ще­ния (округ­ли­те до сотых)?

1) 0,45
2) 0,63
3) 0,24
4) 0,16
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = ко­си­нус x минус 4. Уста­но­ви­те со­от­вет­ствие между наи­боль­шим и наи­мень­шим зна­че­ни­я­ми функ­ции и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Наи­боль­шее зна­че­ние функ­ции

Б) Наи­мень­шее зна­че­ние функ­ции

1) −3

2) −5

3) −1

4) 3

32.  
i

Се­че­ние шара, удалённое на 1 от цен­тра, имеет пло­щадь 8π. Уста­но­ви­те со­от­вет­ствие между ра­ди­у­сом шара, его объ­е­мом и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Ра­ди­ус шара

Б) Объем шара

1) 27π

2) 3

3) 2

4) 36π

33.  
i

Най­ди­те два на­ту­раль­ных числа x и y, x > y, если из­вест­но, что сумма чисел x и y равна 7, а про­из­ве­де­ние раз­но­сти этих чисел на раз­ность квад­ра­тов этих чисел равно 175.

A) Число x при­над­ле­жит про­ме­жут­ку

Б) Число y при­над­ле­жит про­ме­жут­ку

1) [3; 4]

2) (5; 7)

3) [1; 2)

4) (2; 3)

34.  
i

Даны урав­не­ния  дробь: чис­ли­тель: x в квад­ра­те минус 6x плюс 5, зна­ме­на­тель: x минус 1 конец дроби = 0 и  левая круг­лая скоб­ка x в квад­ра­те минус 4 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та = 0. Уста­но­ви­те со­от­вет­ствия:

 

A)  Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б)  Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1)  0, 3, 4

2)  5, 2, 8

3)  –1, 0, 2

4)  5, 1, 2

35.  
i

Дана гео­мет­ри­че­ская про­грес­сия (bn), у ко­то­рой b5  =  –14, b8  =  112. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A)  q

Б)  b1

1)  –2

2)  5

3)  –1

4)  –0,875

36.  
i

Упро­сти­те  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 7 ко­рень из: на­ча­ло ар­гу­мен­та: 7 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та конец ар­гу­мен­та конец ар­гу­мен­та .

1)  дробь: чис­ли­тель: 7, зна­ме­на­тель: 8 конец дроби
2)  минус дробь: чис­ли­тель: 8, зна­ме­на­тель: 7 конец дроби
3) 7 ко­рень из 7
4)  ло­га­рифм по ос­но­ва­нию 7 левая круг­лая скоб­ка дробь: чис­ли­тель: 7, зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка
5)  минус \farc 78
6)  минус ло­га­рифм по ос­но­ва­нию 7 левая круг­лая скоб­ка дробь: чис­ли­тель: 8, зна­ме­на­тель: 7 конец дроби пра­вая круг­лая скоб­ка
37.  
i

Зна­че­ние вы­ра­же­ния 12 синус дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 8 конец дроби ко­си­нус дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 8 конец дроби равно

1) 0
2) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4)  минус 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
5)  минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
6) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
38.  
i

Ука­жи­те пер­вые пять чле­нов по­сле­до­ва­тель­но­сти, со­став­лен­ной из зна­че­ний функ­ции y = ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из 2 пра­вая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка ко­рень из 2 пра­вая круг­лая скоб­ка , при x боль­ше 1, где x — число, яв­ля­ю­ще­е­ся сте­пе­нью числа 2.

1) 2; 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 4; 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та : 8
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 4 ; 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 8
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 2 ; 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 8 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 8 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 10 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
5) 1 ; ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 2 ; 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 4
6)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 8 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; 16 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
39.  
i

Ре­ши­те си­сте­му, со­дер­жа­щую ир­ра­ци­о­наль­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка ко­рень из: на­ча­ло ар­гу­мен­та: x плюс y минус 1 конец ар­гу­мен­та =1, новая стро­ка ко­рень из: на­ча­ло ар­гу­мен­та: x минус y плюс 2 конец ар­гу­мен­та =2y минус 2. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x плюс y.

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3) 4
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
5) 2
6)  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 16 конец ар­гу­мен­та
40.  
i

В сфере, пло­щадь по­верх­но­сти ко­то­рой равна 2028 см2 (при­нять π  ≈  3), на рас­сто­я­нии OO1 от ее цен­тра про­ве­де­но се­че­ние. Зна­че­ние пло­ща­ди этого се­че­ния имеет де­ли­те­ли

1) 22
2) 16
3) 3
4) 14
5) 5
6) 36