Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 33048
1.  
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: ко­рень из: на­ча­ло ар­гу­мен­та: 28 минус 16 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та конец ар­гу­мен­та конец ар­гу­мен­та .

1) 2 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус 1
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та плюс 1
4) 2 минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 2x в квад­ра­те минус y, зна­ме­на­тель: x минус 4 конец дроби минус 2x плюс дробь: чис­ли­тель: 3x, зна­ме­на­тель: 4 минус x конец дроби при x  =  5, y  =  10.

1) 15
2) 10
3) 20
4) 25
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 5 синус дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 12 конец дроби умно­жить на ко­си­нус дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 12 конец дроби .

1) 1
2) −0,5
3) 0,5
4) −1,25
4.  
i

При­ве­ди­те од­но­член 4a в квад­ра­те b в сте­пе­ни 6 a в сте­пе­ни 5 b в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка к стан­дарт­но­му виду.

1) 4a в квад­ра­те b в сте­пе­ни 6
2) 4a в сте­пе­ни 6 b в сте­пе­ни 6
3) 4a в сте­пе­ни 7 b в сте­пе­ни 4
4) a в сте­пе­ни 7 b в сте­пе­ни 4
5.  
i

Ре­ши­те урав­не­ние: 2 левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка =1 минус 3 x .

1) 6
2) 5
3) 0
4) −1
6.  
i

Ре­ши­те си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний 2x минус 3y=14,x плюс 3y= минус 11. конец си­сте­мы .

Для по­лу­чен­но­го ре­ше­ния (x0; y0) вы­чис­ли­те сумму x0 + y0.
1) −4
2) 1
3) −1
4) −3
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка синус x ко­си­нус 2x плюс синус 2x ко­си­нус x пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ко­си­нус 3x
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби синус 3x
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ко­си­нус 3x
4)  минус ко­си­нус 3x
8.  
i

В шар ра­ди­у­сом 5 м впи­сан ци­линдр с диа­мет­ром ос­но­ва­ния 6 м. Вы­со­та ци­лин­дра равна

1) 10 м
2) 4 м
3) 6 м
4) 8 м
9.  
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 7 минус 3x, зна­ме­на­тель: 2 минус 5x конец дроби мень­ше или равно 2, дробь: чис­ли­тель: 2x плюс 1, зна­ме­на­тель: 3x минус 3 конец дроби боль­ше 4. конец си­сте­мы .

1)  левая круг­лая скоб­ка 1; 1,3 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 1,3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби ; 0,4 пра­вая круг­лая скоб­ка
10.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 5x= дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 30 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 20 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 15 конец дроби
11.  
i

Най­ди­те зна­че­ние про­из­вод­ной функ­ции x в кубе минус ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та в точке x  =  0.

1) 0
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
4) 1
12.  
i

Pешите не­ра­вен­ство: 7 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 4x боль­ше 3x плюс 16.

1) нет ре­ше­ний
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка минус 4; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 16 пра­вая квад­рат­ная скоб­ка
13.  
i

По дан­ным ри­сун­ка най­ди­те зна­че­ние x.

1) 36
2) 19
3) 18
4) 12
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от минус 2 до минус 1, левая круг­лая скоб­ка 6x в квад­ра­те плюс 2x минус 10 пра­вая круг­лая скоб­ка dx.

1) 0
2) −4
3) 8
4) 1
15.  
i

Най­ди­те угол между плос­ко­стя­ми, если  DC = MK =3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , DM =12 см и  CK =6 см.

1) 90°
2) 30°
3) 60°
4) 45°
16.  
i

Ре­ши­те урав­не­ние 2 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка минус x минус 1 пра­вая круг­лая скоб­ка =1.

1) 1
2) −2
3) −1
4) 0
17.  
i

Pешите си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 4 в сте­пе­ни левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка = 16,x плюс y = 4. конец си­сте­мы .

1) (1; 3)
2) (4; 0)
3) (2; 2)
4) (3; 1)
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной двумя пря­мы­ми: y=2x,y=x,0 мень­ше или равно x мень­ше или равно 3.

1) 2,25
2) 2
3) 4
4) 4,5
19.  
i

В ромбе с пе­ри­мет­ром, рав­ным 40, одна из диа­го­на­лей равна 12. Най­ди­те вто­рую диа­го­наль.

1) 3,5
2) 16
3) 8
4) 6
20.  
i

Учи­тель дал за­да­ние: из пред­ло­жен­ных по­сле­до­ва­тель­но­стей

а)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби ;\ldots

б)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 24 конец дроби ;\ldots

в) 10 ; 8 ; 6 ; 2 ; \ldots

вы­брать бес­ко­неч­но убы­ва­ю­щую гео­мет­ри­че­скую про­грес­сию и найти сумму всех его чле­нов. Если уче­ник вы­пол­нил за­да­ние верно, то в от­ве­те он по­лу­чил.
1)  целая часть: 1, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
3) 3
4) 1
21.  
i

Сто­ро­ны пра­виль­но­го тре­уголь­ни­ка ABC равны 4. Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров \overrightarrowAB и \overrightarrowAC.

1) 16
2) 8
3) 4
4) 12
22.  
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та плюс 4, при x мень­ше 2.

1) x плюс 2
2) 6 минус x
3)  минус x минус 2
4) x плюс 6
23.  
i

Ука­жи­те про­из­ве­де­ние кор­ней урав­не­ния: x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 4 x плюс 1 пра­вая круг­лая скоб­ка = 6 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 6 16 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 16 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
3) 1
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
24.  
i

Ре­ши­те не­ра­вен­ство 2 в сте­пе­ни x плюс 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка боль­ше или равно 144.

1)  левая квад­рат­ная скоб­ка 34,5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка 4; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;4 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;4,5 пра­вая квад­рат­ная скоб­ка
25.  
i

На­пи­ши­те урав­не­ние ка­са­тель­ной в гра­фи­ку функ­ции  y = 2x в квад­ра­те минус x плюс 3 в точке  x_0 = 1.

1)  y = 1 плюс 2x
2)  y = 1 минус 3x
3)  y = минус 1 минус 3x
4)  y = 3x плюс 1
26.  
i

Перед отъ­ез­дом в Япо­нию, Самат при­об­рел для хра­не­ния важ­ных до­ку­мен­тов и цен­ных вещей ко­до­вый сейф с ше­сти­знач­ным кодом, со­сто­я­щим из цифр 1, 2, 3 и букв M, N, K.

Сколь­ко ше­сти­знач­ных кодов для от­кры­ва­ния сейфа можно со­ста­вить из дан­ных цифр и букв?

1) 120
2) 36
3) 720
4) 5040
27.  
i

Вы­со­та каж­до­го из трех ре­зер­ву­а­ров A, B и C равна 2. При рас­че­тах при­нять  Пи \approx3.

Опре­де­ли­те объем ре­зер­ву­а­ра B.

1) 6
2) 12
3) 18
4) 24
28.  
i

Hа столе лежат кар­точ­ки, на ко­то­рых за­пи­са­ны числа 1; 2; 3; 4; 5. Марат на­у­гад взял три из них.

Kакова ве­ро­ят­ность, что объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, сто­ро­ны ко­то­ро­го равны чис­лам, за­пи­сан­ным на кар­точ­ках, ко­то­рые вы­тя­нул Марат, будет крат­ным 2?

1) 0,1
2) 0,3
3) 0,9
4) 0,5
29.  
i

Hа столе лежат кар­точ­ки, на ко­то­рых за­пи­са­ны числа 1; 2; 3; 4; 5. Марат на­у­гад взял три из них.

Kакова ве­ро­ят­ность того, что Марат смо­жет по­стро­ить пря­мо­уголь­ный тре­уголь­ник, сто­ро­ны ко­то­ро­го равны чис­лам, за­пи­сан­ных на вы­бран­ных им кар­точ­ках?

1) 0,6
2) 0,1
3) 0,5
4) 0,3
30.  
i

Вы­со­та каж­до­го из трех ре­зер­ву­а­ров A, B и C равна 2. При рас­че­тах при­нять  Пи \approx3.

Из­вест­но, что чем боль­ше пло­щадь бо­ко­вой по­верх­но­сти и верх­ней части ре­зер­ву­а­ра, тем быст­рее про­ис­хо­дит на­грев воды в нем на солн­це. Опре­де­ли­те ре­зер­ву­ар, в ко­то­ром вода на­гре­ва­ет­ся быст­рее.

1) A
2) B
3) C
4) A и C
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 4x минус 5 конец ар­гу­мен­та . Уста­но­ви­те со­от­вет­ствия:

A) Об­ласть опре­де­ле­ния функ­ции

Б) Нули функ­ции

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

2) {−5; 1}

3) {−1; 5}

4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

32.  
i

Даны две сферы: с цен­тром в точке O, ра­ди­у­сом R  =  6 и с цен­тром в точке P, ра­ди­у­сом r  =  2. Сферы рас­по­ло­же­ны так что центр каж­дой сферы лежит вне дру­гой сферы. Уста­но­ви­те со­от­вет­ствие между при­ве­ден­ны­ми ниже дан­ны­ми.

A) Сферы ка­са­ют­ся при

Б) Сферы пе­ре­се­ка­ют­ся при

1) OP  =  7

2) OP  =  8

3) OP  =  9

4) OP  =  10

33.  
i

Най­ди­те два на­ту­раль­ных числа a и b, если из­вест­но, что от­но­ше­ние чисел a и b равно 2, а от­но­ше­ние суммы их квад­ра­тов этих чисел к их раз­но­сти равно 10.

A) Число a при­над­ле­жит про­ме­жут­ку

Б) Число b при­над­ле­жит про­ме­жут­ку

1) (6; 10)

2) (3; 5)

3) (1; 2]

4) (0; 1)

34.  
i

Даны урав­не­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: 6 минус x конец ар­гу­мен­та и x в квад­ра­те минус 9x плюс 14 = 0. Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния, но не яв­ля­ет­ся кор­нем пер­во­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) 2

2) 1

3) 4

4) 7

35.  
i

Ариф­ме­ти­че­ская про­грес­сия (an) за­да­ет­ся фор­му­лой n⁠-⁠го члена: a_n=5 минус 3,6 n. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) a6

Б) a_4 минус a_2

1) −10,8

2) −3,6

3) −7,2

4) −16,6

36.  
i

Из пе­ре­чис­лен­ных ниже от­ве­тов най­ди­те те, ко­то­рые равны зна­че­нию вы­ра­же­ния  дробь: чис­ли­тель: |a плюс 2|, зна­ме­на­тель: a минус 1 конец дроби , при a  =  −5.

1)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби
2) −0,5
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
5) −0,2
6) 0,5
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­си­нус 76 гра­ду­сов ко­си­нус 16 гра­ду­сов плюс синус 76 гра­ду­сов синус 16 гра­ду­сов .

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3) 0
4) 1
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6) 2
38.  
i

Eсли в ариф­ме­ти­че­ской про­грес­сии a_6 плюс a_9 плюс a_12 плюс a_15 = 20, то S20 равна?

1) 10 в квад­ра­те
2) 10 в кубе
3) 150
4) 15 умно­жить на 10
5) 200
6) 100
39.  
i

Ре­ши­те си­сте­му ло­га­риф­ми­че­ских урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка x минус 2y минус 6 пра­вая круг­лая скоб­ка =0, новая стро­ка \log _2 левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка =1. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
5)  дробь: чис­ли­тель: 6, зна­ме­на­тель: 10 конец дроби
6)  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби
40.  
i

В пра­виль­ной ше­сти­уголь­ной пи­ра­ми­де SABCDEF с вер­ши­ной S сто­ро­на ос­но­ва­ния равна  ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , а бо­ко­вое ребро равно 2 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та . Най­ди­те угол между реб­ра­ми AS и SD.

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
3) 60°
4) 45°
5) 90°
6)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби