Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 28933
1.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  дробь: чис­ли­тель: 53 в квад­ра­те минус 27 в квад­ра­те , зна­ме­на­тель: 79 в квад­ра­те минус 51 в квад­ра­те конец дроби .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби
2)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
4)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 7 конец дроби
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 2x в квад­ра­те минус y, зна­ме­на­тель: x минус 4 конец дроби минус 2x плюс дробь: чис­ли­тель: 3x, зна­ме­на­тель: 4 минус x конец дроби при x  =  5, y  =  10.

1) 15
2) 10
3) 20
4) 25
3.  
i

Вы­чис­ли­те  арк­си­нус дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби плюс арк­тан­генс левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из 3 конец дроби пра­вая круг­лая скоб­ка

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
3)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби
4.  
i

Упро­сти­те вы­ра­же­ние x левая круг­лая скоб­ка 3x в квад­ра­те плюс 2x пра­вая круг­лая скоб­ка минус 9x в квад­ра­те левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка

1) 38x в квад­ра­те минус 6x в кубе
2) 38x в сте­пе­ни 4 минус 6x в сте­пе­ни 6
3) 6x в кубе плюс 38x в квад­ра­те
4)  минус 6x в кубе минус 34x в квад­ра­те
5.  
i

Ре­ши­те урав­не­ние: 4x в сте­пе­ни 4 минус 12x в квад­ра­те плюс 9 = 0.

1)  ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та и  минус ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та и  минус ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби и  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 16 конец дроби и  минус дробь: чис­ли­тель: 9, зна­ме­на­тель: 16 конец дроби
6.  
i

Ре­ши­те си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний 2x минус 3y=14,x плюс 3y= минус 11. конец си­сте­мы .

Для по­лу­чен­но­го ре­ше­ния (x0; y0) вы­чис­ли­те сумму x0 + y0.
1) −4
2) 1
3) −1
4) −3
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка ко­си­нус левая круг­лая скоб­ка 5x минус 3 пра­вая круг­лая скоб­ка минус синус левая круг­лая скоб­ка дробь: чис­ли­тель: 8x, зна­ме­на­тель: 3 конец дроби минус 4 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби ко­си­нус левая круг­лая скоб­ка 5x минус 3 пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 3, зна­ме­на­тель: 8 конец дроби синус левая круг­лая скоб­ка дробь: чис­ли­тель: 8x, зна­ме­на­тель: 3 конец дроби минус 4 пра­вая круг­лая скоб­ка плюс C
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби синус левая круг­лая скоб­ка 5x минус 3 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 8 конец дроби ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 8x, зна­ме­на­тель: 3 конец дроби минус 4 пра­вая круг­лая скоб­ка плюс C
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби синус левая круг­лая скоб­ка 5x минус 3 пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 3, зна­ме­на­тель: 8 конец дроби ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 8x, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс C
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби синус левая круг­лая скоб­ка 5x минус 3 пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 3, зна­ме­на­тель: 8 конец дроби ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 8x, зна­ме­на­тель: 3 конец дроби минус 4 пра­вая круг­лая скоб­ка плюс C
8.  
i

Oсевое се­че­ние ци­лин­дра — квад­рат. Ра­ди­ус ос­но­ва­ния ци­лин­дра равен 6 см. Най­ди­те объем ци­лин­дра.

1) 424π см3
2) 428π см3
3) 432π см3
4) 420π см3
9.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 5 левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка мень­ше или равно 1 минус 2x,3x минус 1 мень­ше 15 плюс 11x. конец си­сте­мы .

1) [1; −2)
2) (3; 4)
3) (−2; 3]
4) (−2; 0]
10.  
i

Ко­рень урав­не­ния  ко­си­нус 2 x минус синус x=0, при­над­ле­жа­щий про­ме­жут­ку  левая круг­лая скоб­ка 0; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , равен?

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
4) 0
11.  
i

Най­ди­те зна­че­ние про­из­вод­ной функ­ции x в кубе минус ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та в точке x  =  0.

1) 0
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
4) 1
12.  
i

Ре­ши­те не­ра­вен­ство: 3x плюс 5 мень­ше или равно 4x плюс 2.

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 3 пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
13.  
i

Ко­си­нус боль­ше­го угла тре­уголь­ни­ка со сто­ро­на­ми 13 см, 14 см, 15 см равен?

1)  дробь: чис­ли­тель: 13, зна­ме­на­тель: 15 конец дроби
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 15 конец дроби
3)  дробь: чис­ли­тель: 14, зна­ме­на­тель: 15 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 13 конец дроби
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от минус 2 до минус 1, левая круг­лая скоб­ка 6x в квад­ра­те плюс 2x минус 10 пра­вая круг­лая скоб­ка dx.

1) 0
2) −4
3) 8
4) 1
15.  
i

Опре­де­ли­те по ри­сун­ку длину от­рез­ка ВK, если CD = 5,8 см.

1) 3,2 см
2) 2,9 см
3) 2,6 см
4) 5,2 см
16.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния 2x умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 30 конец ар­гу­мен­та =x в квад­ра­те плюс x плюс 30.

1) 1
2) 4
3) 6
4) 7
17.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 4 в сте­пе­ни x минус 6 умно­жить на 2 в сте­пе­ни x плюс 8 мень­ше или равно 0,2x минус 3 боль­ше 0. конец си­сте­мы .

1) (1; 2)
2) (1,5; 2]
3) [1,5; 2]
4) [1; 2]
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс 5,y=5, минус 4 мень­ше или равно x мень­ше или равно 2.

1) 18
2) 24
3) 10
4) 30
19.  
i

Най­ди­те пло­щадь рав­но­бед­рен­ной тра­пе­ции, если ее диа­го­наль равна 25, а вы­со­та 7.

1) 174
2) 84
3) 128
4) 168
20.  
i

В ариф­ме­ти­че­ской про­грес­сии най­ди­те a7, если a_1 = минус ко­рень из 2 и d = 1 плюс ко­рень из 2 .

1) 3 ко­рень из 2 плюс 5
2) 5 ко­рень из 2 плюс 6
3) 6 ко­рень из 2 плюс 5
4) 5 ко­рень из 2 плюс 7
21.  
i

Най­ди­те |\veca плюс \vecb|:

1) 4
2) 6
3) 5
4) 3
22.  
i

Зна­че­ние про­из­ве­де­ния

 дробь: чис­ли­тель: x в квад­ра­те плюс 3 x плюс 2 x y плюс 6 y, зна­ме­на­тель: 2 x в квад­ра­те плюс x y плюс 6 x плюс 3 y конец дроби умно­жить на дробь: чис­ли­тель: 6 x в квад­ра­те плюс 2 x плюс 3 x y плюс y, зна­ме­на­тель: x y минус 2 x плюс 2 y в квад­ра­те минус 4 y конец дроби

равно

1)  дробь: чис­ли­тель: 3 x плюс 1, зна­ме­на­тель: y минус 2 конец дроби
2)  дробь: чис­ли­тель: 2 x плюс y, зна­ме­на­тель: x плюс 21 конец дроби
3)  дробь: чис­ли­тель: x плюс 3, зна­ме­на­тель: 2 x плюс y конец дроби
4)  дробь: чис­ли­тель: x плюс 2 y, зна­ме­на­тель: x плюс 3 конец дроби
23.  
i

Ре­ши­те урав­не­ние \log _3x минус 14=2.

1) 2
2) 0
3) 1
4)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
24.  
i

Ре­ши­те не­ра­вен­ство \log _ дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби левая круг­лая скоб­ка x в квад­ра­те плюс 3x плюс 4 пра­вая круг­лая скоб­ка боль­ше или равно минус 1.

1) [−2; −1]
2) (−2; −1)
3)  левая квад­рат­ная скоб­ка минус 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та ,x_0=4.

1) y = дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x плюс 1
2) y = дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x минус 1
3) y = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби x плюс 1
4) y = 4x плюс 1
26.  
i

Вы­пуск­ной бал

Це­ре­мо­нию вру­че­ния ат­те­ста­тов вы­пуск­ни­кам ре­ши­ли про­ве­сти в го­род­ском парке. По­стро­и­ли две арки в форме по­лу­кру­га с ра­ди­у­са­ми 6 м и 8 м. Сцену, где будет про­хо­дить кон­церт­ная про­грам­ма сде­ла­ли в виде боль­шо­го круга ра­ди­у­сом 5 м. На сцену по­сте­ли­ли ковер в виде рав­но­сто­рон­не­го тре­уголь­ни­ка, сто­ро­ны ко­то­ро­го от­се­ка­ют сег­мен­ты рав­ных пло­ща­дей. По­ми­мо этого ре­ши­ли со­ору­дить стенд, где будут рас­по­ло­же­ны фо­то­гра­фии вы­пуск­ни­ков в форме тра­пе­ции с ос­но­ва­ни­я­ми рав­ны­ми 10 см и 16 см и вы­со­той рав­ной 15 см.

Kакой про­цент со­став­ля­ет длина малой арки от длины боль­шой арки?

1) 40%
2) 60%
3) 50%
4) 75%
27.  
i

Цир­ко­вой шатер имеет форму ци­лин­дра с по­став­лен­ным на него усе­чен­ным ко­ну­сом. Диа­метр ос­но­ва­ния ци­лин­дра равен 5 м, диа­метр верх­не­го ос­но­ва­ния усе­чен­но­го ко­ну­са равен 1 м. Вы­со­ты ци­лин­дра и усе­чен­но­го ко­ну­са равны 2 м.

Ра­ди­ус ниж­не­го ос­но­ва­ния шатра равен?

1) 1,5 м
2) 2,5 м
3) 2 м
4) 1 м
28.  
i

Вы­со­та каж­до­го из трех ре­зер­ву­а­ров A, B и C равна 2. При рас­че­тах при­нять  Пи \approx3.

Рас­по­ло­жи­те ре­зер­ву­а­ры по воз­рас­та­нию их объ­е­мов, если ра­ди­у­сы ре­зер­ву­а­ры уве­ли­чить на 1.

1) BAC
2) CAB
3) BCA
4) ABC
29.  
i

Вы­со­та каж­до­го из трех ре­зер­ву­а­ров A, B и C равна 2. При рас­че­тах при­нять  Пи \approx3.

Опре­де­ли­те объем ре­зер­ву­а­ра C.

1) 3,25
2) 5,5
3) 6,75
4) 7,25
30.  
i

Цир­ко­вой шатер имеет форму ци­лин­дра с по­став­лен­ным на него усе­чен­ным ко­ну­сом. Диа­метр ос­но­ва­ния ци­лин­дра равен 5 м, диа­метр верх­не­го ос­но­ва­ния усе­чен­но­го ко­ну­са равен 1 м. Вы­со­ты ци­лин­дра и усе­чен­но­го ко­ну­са равны 2 м.

Бо­ко­вая по­верх­ность, верх­ней части шатра равна  левая круг­лая скоб­ка Пи \approx 3 пра­вая круг­лая скоб­ка

1) 9 ко­рень из 2 м в квад­ра­те
2) 18 ко­рень из 3 м в квад­ра­те
3) 9 ко­рень из 3 м в квад­ра­те
4) 18 ко­рень из 2 м в квад­ра­те

Функ­ция за­да­на урав­не­ни­ем y = 5 в сте­пе­ни x минус 5. Уста­но­ви­те со­от­вет­ствия:

A) Нуль функ­ции

Б) Мно­же­ство зна­че­ний функ­ции

1)  левая круг­лая скоб­ка минус 5; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка

2)  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка

3) 1

4) 0

32.  
i

Даны две сферы: с цен­тром в точке O, ра­ди­у­сом R  =  6 и с цен­тром в точке P, ра­ди­у­сом r  =  2. Сферы рас­по­ло­же­ны так что центр каж­дой сферы лежит вне дру­гой сферы. Уста­но­ви­те со­от­вет­ствие между при­ве­ден­ны­ми ниже дан­ны­ми.

A) Сферы ка­са­ют­ся при

Б) Сферы пе­ре­се­ка­ют­ся при

1) OP  =  7

2) OP  =  8

3) OP  =  9

4) OP  =  10

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в кубе . Уста­но­ви­те со­от­вет­ствие между ко­эф­фи­ци­ен­том при x в пер­вой сте­пе­ни и сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и про­ме­жут­ком, на ко­то­ром они верны.

A) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

Б) Ко­эф­фи­ци­ен­том при x в пер­вой сте­пе­ни

1) (10; 20)

2) (20; 30)

3) (30; 40)

4) (40; 50)

34.  
i

Даны урав­не­ния  ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x в квад­ра­те минус 8x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 2 4 и  дробь: чис­ли­тель: x в квад­ра­те минус 15x плюс 54, зна­ме­на­тель: x минус 6 конец дроби = 0. Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем пер­во­го урав­не­ния, но не яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) 3

2) 2

3) −1

4) 9

35.  
i

Ариф­ме­ти­че­ская про­грес­сия (an) за­да­на фор­му­лой a_n=3n минус 2. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) a6 − a4

Б) S5

1) 25

2) 35

3) 3

4) 6

36.  
i

Из пе­ре­чис­лен­ных ниже от­ве­тов най­ди­те те, ко­то­рые равны зна­че­нию вы­ра­же­ния  дробь: чис­ли­тель: |a плюс 2|, зна­ме­на­тель: a минус 1 конец дроби , при a  =  −5.

1)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби
2) −0,5
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
5) −0,2
6) 0,5
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­си­нус 76 гра­ду­сов ко­си­нус 16 гра­ду­сов плюс синус 76 гра­ду­сов синус 16 гра­ду­сов .

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3) 0
4) 1
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6) 2
38.  
i

Даны три числа, об­ра­зу­ю­щие гео­мет­ри­че­скую про­грес­сию. Если от пер­во­го числа вы­честь 12, то эти числа об­ра­зу­ют ариф­ме­ти­чеcкую про­грес­сию, ко­то­рые в сумме равны боль­ше­му члену гео­мет­ри­че­ской про­грес­сии. Най­ди­те эти числа и вы­бе­ри­те из пред­ло­жен­ных ва­ри­ан­тов числа, со­от­вет­ству­ю­щие гео­мет­ри­че­ской или ариф­ме­ти­чеcкой про­грес­си­ям

1) 18; 10; 2
2) 13; 5; 1
3) 32; 8; 2
4) 27; 9; 3
5) 15; 9; 3
6) 37; 18,5; 9,25
39.  
i

Ре­ши­те си­сте­му, со­дер­жа­щую ир­ра­ци­о­наль­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка ко­рень из: на­ча­ло ар­гу­мен­та: x минус y плюс 5 конец ар­гу­мен­та =3, новая стро­ка ко­рень из: на­ча­ло ар­гу­мен­та: x плюс y минус 5 конец ар­гу­мен­та = минус 2x плюс 11. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби .

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 9 конец ар­гу­мен­та
2) 5
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби
4) 3
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та
6)  ко­рень из: на­ча­ло ар­гу­мен­та: 16 конец ар­гу­мен­та
40.  
i

Объем ко­ну­са равен 27. На вы­со­те ко­ну­са лежит точка и делит её в от­но­ше­нии 2 : 1 счи­тая от вер­ши­ны. Через точку про­ве­де­но се­че­ние, ко­то­рое яв­ля­ет­ся ос­но­ва­ни­ем мень­ше­го ко­ну­са с той же вер­ши­ной. Най­ди­те объем мень­ше­го ко­ну­са.

1) 4
2) 6
3) 10
4) 8
5) 7
6) 9