Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 27428
1.  
i

Hай­ди­те сумму: 1 плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби плюс ...

1) 0,5
2) 0,25
3) 2
4) 1
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: a левая круг­лая скоб­ка b минус 3a пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 3a в квад­ра­те минус ab конец дроби минус 3a при a=2,18, b= минус 5,6.

1) 5,6
2) 0
3) −5,6
4) 0,6
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби минус синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .

1) 1
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4) −2
4.  
i

При­ве­ди­те од­но­член 8a в квад­ра­те b в квад­ра­те a в сте­пе­ни 4 b к стан­дарт­но­му виду.

1) 8a в квад­ра­те b в квад­ра­те
2) 8a в сте­пе­ни 6 b в кубе
3) a в сте­пе­ни 6 b в кубе
4) 8a в сте­пе­ни 4 b
5.  
i

Най­ди­те от­ри­ца­тель­ный ко­рень урав­не­ния 8|x| минус 5|x| минус 17=0.

1)  минус целая часть: 5, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 5
2)  минус целая часть: 5, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3
3)  минус целая часть: 5, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 5
4)  минус целая часть: 5, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3
6.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 4x плюс дробь: чис­ли­тель: 9, зна­ме­на­тель: y конец дроби = 21,17 минус 3x = дробь: чис­ли­тель: 18, зна­ме­на­тель: y конец дроби . конец си­сте­мы .

1) (14; 5)
2) (0; 18)
3) (5; 9)
4) (−15; −11)
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка минус e в сте­пе­ни левая круг­лая скоб­ка минус 2x пра­вая круг­лая скоб­ка плюс 2e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка минус 2x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби плюс 4e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка плюс C
2)  дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка минус 2x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби плюс 4e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка плюс C
3)  дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка минус 2x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби плюс 4e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка плюс C
4)  дробь: чис­ли­тель: e в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби плюс 4e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка плюс C
8.  
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 28 Пи , и его объем равен 28 Пи . Най­ди­те вы­со­ту ци­лин­дра.

1) 3
2) 3,5
3) 7
4) 14
9.  
i

Най­ди­те целые ре­ше­ния си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний 2 левая круг­лая скоб­ка 3x плюс 2 пра­вая круг­лая скоб­ка боль­ше 5 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка ,7 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка мень­ше 3 левая круг­лая скоб­ка 2x плюс 3 пра­вая круг­лая скоб­ка . конец си­сте­мы .

1) −9; −8; −7
2) −8; −7; −6; −5
3) −8; −7
4) −8; −7; −6
10.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 4x= дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 24 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби
3)  дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 16 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 16 конец дроби
5)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции \ левая квад­рат­ная скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 2x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка минус 3x в квад­ра­те пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 1;5 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби минус x в кубе минус дробь: чис­ли­тель: 11, зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби плюс x в кубе
3)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби минус x в кубе плюс дробь: чис­ли­тель: 11, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: x в кубе , зна­ме­на­тель: 3 конец дроби минус x в квад­ра­те плюс дробь: чис­ли­тель: 11, зна­ме­на­тель: 3 конец дроби
12.  
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 7, зна­ме­на­тель: 2x минус 3 конец дроби мень­ше 0.

1)  левая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая круг­лая скоб­ка
13.  
i

Cто­ро­ны тре­уголь­ни­ка от­но­сят­ся как 3 : 5 : 7. Най­ди­те пе­ри­метр по­доб­но­го ему тре­уголь­ни­ка, в ко­то­ром сумма наи­боль­шей и наи­мень­шей сто­рон равна 36 см.

1) 54 см
2) 58 см
3) 27 см
4) 56 см
14.  
i

Вы­чис­ли­те ин­те­грал  ин­те­грал пре­де­лы: от 0 до \tfrac Пи , 6 левая круг­лая скоб­ка синус 5x ко­си­нус 4x минус ко­си­нус 5x синус 4x пра­вая круг­лая скоб­ка dx

1) 0
2) 1
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4) 1 минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
15.  
i

Най­ди­те объём куба, если пло­щадь его пол­ной по­верх­но­сти равна 72 см2.

1) 216 см3.
2) 24 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
3) 126 см3.
4) 16 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
16.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния 2x умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 30 конец ар­гу­мен­та =x в квад­ра­те плюс x плюс 30.

1) 1
2) 4
3) 6
4) 7
17.  
i

Ре­ши­те си­сте­му не­ра­венств

 си­сте­ма вы­ра­же­ний 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка мень­ше левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 6 минус 8 x пра­вая круг­лая скоб­ка , левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 4 x минус 12 пра­вая круг­лая скоб­ка боль­ше 1. конец си­сте­мы .

1) (0; 6)
2) (0; 1)
3) (-2; 6)
4) (2; 6)
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс 2x,y=x плюс 2.

1)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 31, зна­ме­на­тель: 6 конец дроби
19.  
i

Сто­ро­ны па­рал­ле­ло­грам­ма равны 5 см и 6 см, а одна из диа­го­на­лей равна 7 см. Най­ди­те наи­мень­шую вы­со­ту па­рал­ле­ло­грам­ма.

1) 8 см
2) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та см
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та см
4) 4 см
20.  
i

Най­ди­те пер­вый по­ло­жи­тель­ный член ариф­ме­ти­че­ской про­грес­сии: −20,3; −18,7; ...

1) 0,4
2) 1
3) 0,2
4) 0,5
21.  
i

Даны век­то­ры \veca левая фи­гур­ная скоб­ка 4; 3 пра­вая фи­гур­ная скоб­ка , \vecb левая фи­гур­ная скоб­ка 8; минус 10 пра­вая фи­гур­ная скоб­ка , \vecc левая фи­гур­ная скоб­ка минус 4; дробь: чис­ли­тель: 23, зна­ме­на­тель: 3 конец дроби пра­вая фи­гур­ная скоб­ка . Раз­ло­жи­те век­тор \vecc по век­то­рам \veca и \vecb.

1) \vecc= дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби \veca минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби \vecb
2) \vecc= дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби \veca минус дробь: чис­ли­тель: \vect, зна­ме­на­тель: 3 конец дроби \vecb
3) \vecc= минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби \veca минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби \vecb
4) \vecc= дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби \veca минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби \vecb
22.  
i

Из­бавь­тесь от ир­ра­ци­о­наль­но­сти в зна­ме­на­те­ле:  дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x минус y конец ар­гу­мен­та конец дроби .

1)  дробь: чис­ли­тель: x минус y, зна­ме­на­тель: x конец дроби
2)  ко­рень из: на­ча­ло ар­гу­мен­та: x плюс y конец ар­гу­мен­та
3)  ко­рень из: на­ча­ло ар­гу­мен­та: x минус y конец ар­гу­мен­та
4)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x минус y конец ар­гу­мен­та , зна­ме­на­тель: x минус y конец дроби
23.  
i

Ре­ши­те урав­не­ние  де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка = де­ся­тич­ный ло­га­рифм дробь: чис­ли­тель: x плюс 2, зна­ме­на­тель: x минус 3 конец дроби .

1) 4
2) 2
3) −2
4) 1
24.  
i

Ре­ши­те не­ра­вен­ство 2 в сте­пе­ни x плюс 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка боль­ше или равно 144.

1)  левая квад­рат­ная скоб­ка 34,5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка 4; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;4 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;4,5 пра­вая квад­рат­ная скоб­ка
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус 5,x_0=1.

1) y = дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби x минус дробь: чис­ли­тель: 17, зна­ме­на­тель: 5 конец дроби
2) y = дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби x плюс дробь: чис­ли­тель: 17, зна­ме­на­тель: 5 конец дроби
3) y = дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби x минус 3
4) y = дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби x минус дробь: чис­ли­тель: 17, зна­ме­на­тель: 5 конец дроби
26.  
i

Самат стро­ит дач­ный домик формы пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с раз­ме­ра­ми 6 м х 4 м и вы­со­той 3 м. Для этого он за­ку­пил сте­но­вые па­не­ли «Сэнд­вич» раз­ме­ра­ми 3 м х 1 м, и двер­ное по­лот­но с раз­ме­ра­ми 2,1 м х 1 м, окон­ные блоки раз­ме­ра­ми 1,8 м х 1,2 м.

Ка­ко­ва пло­щадь пола дач­но­го до­ми­ка?

1) 20 м2
2) 12 м2
3) 18 м2
4) 24 м2
27.  
i

Уче­ник за­пла­ни­ро­вал ре­монт в своей ком­на­те дли­ной 4 м, ши­ри­ной 5,25 м и вы­со­той 3 м. Он решил про­фес­си­о­наль­но со­ста­вить смету, чтобы уло­жить­ся в бюд­жет. Для по­тол­ка уче­ник вы­брал на­тяж­ные по­тол­ки с мон­та­жом, на стены решил по­кле­ить обои, а для ре­мон­та пола вы­брал ла­ми­нат, так как по ре­ко­мен­да­ци­ям он очень прак­ти­чен и раз­но­об­ра­зен.

Tаб­ли­ца цен на стро­и­тель­ный ма­те­ри­ал в г.Нур-Сул­тан

На­име­но­ва­ние ма­те­ри­а­ла

Цена (тенге)
1Обои (длина 12 м, ши­ри­на 1 м)11 500
2На­тяж­ные по­тол­ки с мон­та­жом
(1 кв. м)
1200
3Ла­ми­нат (1 кв. м)6200
4Гал­те­ли (длина 2,2 м)1050
5Клей для гал­те­лей (тюбик 310 мл),
1 тюб на 20 м
900
6Клей для обоев, 1 пачка на 25 м2850
7Плин­тус (длина 2,2 м)690
8Клей для плин­ту­са (тюбик 310 мл),
1 тюб на 20 м
900

Чему равен пе­ри­метр по­тол­ка в ком­на­те?

1) 19 м
2) 18 м
3) 20,5 м
4) 18,5 м
28.  
i

Чай­ный двор

По­су­да яв­ля­ет­ся то­ва­ром на­род­но­го по­треб­ле­ния и оце­ни­ва­ет­ся не толь­ко как пред­мет быта, но и как эле­мент де­ко­ра. Спрос на нее все­гда оста­ет­ся на до­ста­точ­но вы­со­ком уров­не по ряду при­чин. На се­го­дняш­ний день рынок пред­став­лен мно­го­об­ра­зи­ем то­ва­ров раз­лич­ных видов по­су­ды и це­но­вых ка­те­го­рий, что поз­во­ля­ет удо­вле­тво­рить любой спрос.

В ма­га­зи­не «Чай­ный двор» вы­став­ле­ны на про­да­жу раз­лич­ный ас­сор­ти­мент чай­ной по­су­ды на­чи­ная от ложки для чая, за­кан­чи­вая по­су­дой для чай­ных це­ре­мо­ний из раз­лич­ных ме­тал­лов и ма­те­ри­а­лов. По акции про­да­ва­лись 5 чашек, 8 блюд­цев, 7 ложек. Ма­ди­на ку­пи­ла домой ком­плект по­су­ды по акции.

Сколь­ки­ми спо­со­ба­ми Ма­ди­на может вы­брать в ма­га­зи­не из дан­ных то­ва­ров ком­плект из двух раз­ных пред­ме­тов?

1) 131
2) 125
3) 132
4) 119
29.  
i

Айша из­го­то­ви­ла ко­ну­со­об­раз­ный го­лов­ной убор  — кол­пак (см. рис.).

H=24 см, R=7 см

Сколь­ко нужно ленты, чтобы об­вить края кол­па­ка, если π ≈ 3?

1) 42 см
2) 36 см
3) 46 см
4) 40 см
30.  
i

Самат стро­ит дач­ный домик формы пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с раз­ме­ра­ми 6 м х 4 м и вы­со­той 3 м. Для этого он за­ку­пил сте­но­вые па­не­ли «Сэнд­вич» раз­ме­ра­ми 3 м х 1 м, и двер­ное по­лот­но с раз­ме­ра­ми 2,1 м х 1 м, окон­ные блоки раз­ме­ра­ми 1,8 м х 1,2 м.

Рас­счи­тай­те наи­мень­шую пло­щадь от­хо­дов от сте­но­вых па­не­лей, остав­ших­ся после стро­и­тель­ства в квад­рат­ных мет­рах, с уче­том двух окон и двери.

1) 4,26 м2
2) 6,42 м2
3) 4,32 м2
4) 8,65 м2
31.  
i

Квад­ра­тич­ная функ­ция за­да­на урав­не­ни­ем y = минус x в квад­ра­те плюс 2x плюс 3. Уста­но­ви­те со­от­вет­ствие между ну­ля­ми функ­ции и ко­ор­ди­на­та­ми вер­ши­ны па­ра­бо­лы.

A)  Нули функ­ции

Б)  Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1)  (1; 4)

2)  {−1; 3}

3)  (−2; −1)

4)  {1; 3}

32.  
i

Рав­но­бед­рен­ная тра­пе­ция опи­са­на около окруж­но­сти, ра­ди­ус ко­то­рой равен 14. Бо­ко­вая сто­ро­ны тра­пе­ции равна 30. Уста­но­ви­те со­от­вет­ствия:

A) Сред­няя линия тра­пе­ции

Б) Вы­со­та тра­пе­ции

1) 28

2) 25

3) 24

4) 30

33.  
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  дробь: чис­ли­тель: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в кубе левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в квад­ра­те плюс 2x плюс 1 конец дроби . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) (15; 20)

2) (7; 11)

3) (20; 25)

4) (2; 5)

34.  
i

Даны урав­не­ния  ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x в квад­ра­те минус 8x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 2 4 и  дробь: чис­ли­тель: x в квад­ра­те минус 15x плюс 54, зна­ме­на­тель: x минус 6 конец дроби = 0. Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем пер­во­го урав­не­ния, но не яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) 3

2) 2

3) −1

4) 9

35.  
i

Дана гео­мет­ри­че­ская про­грес­сия (bn), где b2  =  8 и b5  =  512. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем

A) S5

Б) 10 умно­жить на b_3

1) 682

2) 80

3) 674

4) 320

36.  
i

Если

 S = дробь: чис­ли­тель: 0,536 в квад­ра­те минус 0,464 в квад­ра­те , зна­ме­на­тель: 3,6 в квад­ра­те минус 7,2 умно­жить на 2,4 плюс 2,4 в квад­ра­те конец дроби

то верны сле­ду­ю­щие утвер­жде­ния.

1) если S — это 40% числа k, то  k =0,125
2) если S — это 50% числа k, то  k =0,125
3) 40% от числа S равны 0,2
4) если S — это 0,2 числа n, то  n =2,5
5) 20% числа S мень­ше 40% числа S на 0,1
6) 40% от числа S равны 0,02
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус 81 гра­ду­сов синус 51 гра­ду­сов плюс синус 9 гра­ду­сов синус 39 гра­ду­сов .

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3) 0
4) 1
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6) 2
38.  
i

Знаем, что (an) — ариф­ме­ти­че­ская про­грес­сия, седь­мой член, ко­то­рой равен 5, тогда сумма три­на­дца­ти пер­вых чле­нов этой про­грес­сии равна

1) −65
2) 65
3)  минус 5 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та
4) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та
5) 13 ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та
6) 5 ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка 13 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
39.  
i

Ре­ши­те си­сте­му ра­ци­о­наль­ных урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: x минус y конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x плюс y конец дроби =1, новая стро­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: x плюс y конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус y конец дроби =4. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния 2x плюс 3y.

1) 2
2)  ко­рень из 9
3) 3
4)  ко­рень из 4
5) −2
6) 5
40.  
i

Из ко­ну­са вы­ре­за­ли шар наи­боль­ше­го объёма. Най­ди­те от­но­ше­ние объёма сре­зан­ной части ко­ну­са к объёму шара, если осе­вое се­че­ние ко­ну­са — рав­но­сто­рон­ний тре­уголь­ник.

1)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби