Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 23906
1.  
i

Сумма числа 3 и зна­че­ния част­но­го чисел 24 и 6 равна

1) 6
2) 10
3) 9
4) 7
1) 1
2) 4
3) 2
4) 1,2
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 12 конец ар­гу­мен­та синус в квад­ра­те дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .

1) −1,5
2) 0,5
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4.  
i

При­ве­ди­те од­но­член a в квад­ра­те b в сте­пе­ни 7 a в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка b в сте­пе­ни 5 к стан­дарт­но­му виду.

1) a в квад­ра­те b в сте­пе­ни левая круг­лая скоб­ка 12 пра­вая круг­лая скоб­ка
2) a в квад­ра­те b в квад­ра­те
3) ab в сте­пе­ни левая круг­лая скоб­ка 12 пра­вая круг­лая скоб­ка
4) ab в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка
5.  
i

Чис­ли­тель дроби на 4 мень­ше ее зна­ме­на­те­ля. Если эту дробь сло­жить с об­рат­ной ей дро­бью, то по­лу­чит­ся число  дробь: чис­ли­тель: 106, зна­ме­на­тель: 45 конец дроби . Най­ди­те ис­ход­ную дробь.

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби
2)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 13 конец дроби
3)  дробь: чис­ли­тель: 11, зна­ме­на­тель: 15 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 9 конец дроби
6.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 5x минус 2y = 15, минус 2x плюс y = минус 7. конец си­сте­мы .

1) (3; 0)
2) (0; −7,5)
3) (1; 3)
4) (1; −5)
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка дробь: чис­ли­тель: 3 минус x, зна­ме­на­тель: ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та конец дроби минус дробь: чис­ли­тель: x плюс 5, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та конец дроби пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 30 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та левая круг­лая скоб­ка 18x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 7, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка плюс 20x минус 135 ко­рень 6 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс 300 пра­вая круг­лая скоб­ка плюс C
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 30 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та левая круг­лая скоб­ка 18x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 11, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка плюс 20x минус 135 ко­рень 6 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс 300 пра­вая круг­лая скоб­ка плюс C
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 30 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та левая круг­лая скоб­ка 18x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 7, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка плюс 20x минус 135 ко­рень 6 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс 300 пра­вая круг­лая скоб­ка плюс C
4)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 30 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та левая круг­лая скоб­ка 18x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 7, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка плюс 30x минус 135 ко­рень 6 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс 300 пра­вая круг­лая скоб­ка плюс C
8.  
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 15 Пи . Най­ди­те объем V ци­лин­дра, если из­вест­но, что ра­ди­ус его ос­но­ва­ния боль­ше вы­со­ты на 3,5. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 6 умно­жить на V, зна­ме­на­тель: Пи конец дроби .

1) 225
2) 196
3) 250
4) 200
9.  
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: x плюс 3, зна­ме­на­тель: x минус 4 конец дроби боль­ше 1, дробь: чис­ли­тель: x минус 5, зна­ме­на­тель: 2x плюс 4 конец дроби мень­ше или равно 2. конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка минус целая часть: 4, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3 ; минус 2 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус целая часть: 4, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус 2; 4 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 4; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
10.  
i

Ре­ши­те урав­не­ние:  арк­ко­си­нус x= синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби .

1)  ко­си­нус 1
2) 0
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
4)  ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3 левая круг­лая скоб­ка 1 минус 3x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 4x плюс 5 пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка 3;6 пра­вая круг­лая скоб­ка .

1) 12x в кубе минус дробь: чис­ли­тель: 33x в квад­ра­те , зна­ме­на­тель: 2 конец дроби плюс 15x плюс 433,5
2)  минус 12x в кубе минус дробь: чис­ли­тель: 33x в квад­ра­те , зна­ме­на­тель: 2 конец дроби плюс 15x плюс 433,5
3)  минус 12x в кубе минус дробь: чис­ли­тель: 33x в квад­ра­те , зна­ме­на­тель: 2 конец дроби плюс 433,5
4) 12x в кубе минус дробь: чис­ли­тель: 33x в квад­ра­те , зна­ме­на­тель: 2 конец дроби
12.  
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 3x плюс 9, зна­ме­на­тель: 3 минус x конец дроби боль­ше или равно 0.

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая круг­лая скоб­ка \cup левая квад­рат­ная скоб­ка 3 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2) [-3; 3)
3) (-3; 3)
4) (-3; 3]
13.  
i

Ис­поль­зуя чер­теж, вы­чис­ли­те пло­щадь тре­уголь­ни­ка ABC.

1)  дробь: чис­ли­тель: 9 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
2) 9 ко­рень из 3
3)  дробь: чис­ли­тель: 3 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
4) 9
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 0 до 3, x левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 4 минус x пра­вая круг­лая скоб­ка dx.

1)  минус дробь: чис­ли­тель: 153, зна­ме­на­тель: 4 конец дроби
2) 0
3)  дробь: чис­ли­тель: 117, зна­ме­на­тель: 4 конец дроби
4)  минус дробь: чис­ли­тель: 155, зна­ме­на­тель: 4 конец дроби
15.  
i

Най­ди­те вы­со­ту пи­ра­ми­ды, каж­дое бо­ко­вое ребро ко­то­рой равно 10 см и в ос­но­ва­нии квад­рат со сто­ро­ной 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см.

1) 8 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см.
2) 8 см
3) 6 см
4) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см.
16.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 3x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус x конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: 12 минус x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус x конец ар­гу­мен­та .

1) −6
2) −4
3) −1
4) 2
17.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка ко­рень x минус 1 пра­вая квад­рат­ная скоб­ка 7 пра­вая круг­лая скоб­ка в квад­ра­те минус ко­рень из левая квад­рат­ная скоб­ка y минус 1 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 343 конец ар­гу­мен­та = 0,3 в сте­пе­ни y = левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка y минус 2x пра­вая круг­лая скоб­ка конец си­сте­мы .

1)  левая круг­лая скоб­ка минус 1; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
2) (3; 4)
3) (1; −2)
4)  левая круг­лая скоб­ка 3; дробь: чис­ли­тель: ко­рень из 7 , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной двумя пря­мы­ми: y=10x минус 15,y= минус 5x плюс 2, минус 3 мень­ше или равно x мень­ше или равно 5.

1)  дробь: чис­ли­тель: 3607, зна­ме­на­тель: 15 конец дроби
2)  дробь: чис­ли­тель: 3604, зна­ме­на­тель: 11 конец дроби
3)  дробь: чис­ли­тель: 3604, зна­ме­на­тель: 15 конец дроби
4)  дробь: чис­ли­тель: 3614, зна­ме­на­тель: 15 конец дроби
19.  
i

Кар­тин­ка имеет форму пря­мо­уголь­ни­ка со сто­ро­на­ми 24 см и 38 см. Её на­кле­и­ли на бу­ма­гу так, что во­круг кар­тин­ки по­лу­чи­лась окан­тов­ка оди­на­ко­вой ши­ри­ны. Пло­щадь, ко­то­рую за­ни­ма­ет кар­тин­ка с окан­тов­кой, равна 1976 см2. Ка­ко­ва ши­ри­на окан­тов­ки?

1) 6
2) 9
3) 4
4) 7
20.  
i

Ариф­ме­ти­че­ская про­грес­сия 4, 7, 10... и гео­мет­ри­че­ская про­грес­сия 2, 4, 8... имеют по 40 чле­нов. Сколь­ко оди­на­ко­вых чле­нов в обеих про­грес­си­ях?

1) 3
2) 6
3) 2
4) 4
21.  
i

На ри­сун­ке изоб­ра­жен рав­но­сто­рон­ний тре­уголь­ник ABC. Най­ди­те длины век­то­ров \overrightarrowAB минус \overrightarrowAC и \overrightarrowAB плюс \overrightarrowAC, если сто­ро­ны тре­уголь­ни­ка равны 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

1) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ,6
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ,6
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ,5
4) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ,6
22.  
i

Упро­сти­те:  дробь: чис­ли­тель: синус 3 альфа , зна­ме­на­тель: синус альфа конец дроби минус дробь: чис­ли­тель: ко­си­нус 3 альфа , зна­ме­на­тель: ко­си­нус альфа конец дроби .

1) 0
2) 1
3) 2
4) −1
23.  
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка = 2.

1) 2
2) 3
3) 4
4) −2; 3
24.  
i

Ре­ши­те не­ра­вен­ство 3 в сте­пе­ни x мень­ше 27 умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка .

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 3 пра­вая круг­лая скоб­ка
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 2, зна­ме­на­тель: x в квад­ра­те минус 3x конец дроби ,x_0=4.

1) y = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби x плюс 3
2) y = минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 8 конец дроби x плюс 3
3) y = минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 8 конец дроби x плюс 1
4) y = минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 8 конец дроби x плюс 3
26.  
i

Бро­са­ют од­но­вре­мен­но два иг­раль­ных ку­би­ка, на гра­нях ко­то­рых рас­по­ло­же­ны числа от 1 до 6.

Ко­ли­че­ство спо­со­бов вы­па­де­ния чет­но­го числа равна

1) 3
2) 9
3) 6
4) 4
27.  
i

Для из­го­тов­ле­ния сталь­ных ди­зай­нер­ских шаров, завод по­лу­чил за­го­тов­ки в виде куба. Про­грамм­ная уста­нов­ка для об­та­чи­ва­ния де­та­лей тре­бу­ет ввода ко­ор­ди­нат за­го­тов­ки в трёхмер­ном про­стран­стве. Про­грам­мист вво­дит си­сте­му ко­ор­ди­нат в вер­ши­ну куба как по­ка­за­но на ри­сун­ке.

Длина ребра куба равна

1) 5
2) 3
3) 4
4) 2
28.  
i

Для из­го­тов­ле­ния сталь­ных ди­зай­нер­ских шаров, завод по­лу­чил за­го­тов­ки в виде куба. Про­грамм­ная уста­нов­ка для об­та­чи­ва­ния де­та­лей тре­бу­ет ввода ко­ор­ди­нат за­го­тов­ки в трёхмер­ном про­стран­стве. Про­грам­мист вво­дит си­сте­му ко­ор­ди­нат в вер­ши­ну куба как по­ка­за­но на ри­сун­ке.

Опре­де­ли­те ко­ор­ди­на­ты точки C.

1) (4; 0; 0)
2) (0; 4; 0)
3) (4; 4; 0)
4) (4; 4; 4)
29.  
i

Бро­са­ют од­но­вре­мен­но два иг­раль­ных ку­би­ка, на гра­нях ко­то­рых рас­по­ло­же­ны числа от 1 до 6.

Сколь­ки­ми спо­со­ба­ми может вы­пасть в сумме чет­ное число?

1) 10
2) 16
3) 18
4) 14
30.  
i

Для из­го­тов­ле­ния сталь­ных ди­зай­нер­ских шаров, завод по­лу­чил за­го­тов­ки в виде куба. Про­грамм­ная уста­нов­ка для об­та­чи­ва­ния де­та­лей тре­бу­ет ввода ко­ор­ди­нат за­го­тов­ки в трёхмер­ном про­стран­стве. Про­грам­мист вво­дит си­сте­му ко­ор­ди­нат в вер­ши­ну куба как по­ка­за­но на ри­сун­ке.

Для из­го­тов­ле­ния де­та­ли в форме шара со­ставь­те его урав­не­ние.

1)  левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка z плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те =4
2)  левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка z плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те =2
3)  левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка z минус 2 пра­вая круг­лая скоб­ка в квад­ра­те =2
4)  левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка z минус 2 пра­вая круг­лая скоб­ка в квад­ра­те =4
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = ко­си­нус x минус 4. Уста­но­ви­те со­от­вет­ствие между наи­боль­шим и наи­мень­шим зна­че­ни­я­ми функ­ции и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Наи­боль­шее зна­че­ние функ­ции

Б) Наи­мень­шее зна­че­ние функ­ции

1) −3

2) −5

3) −1

4) 3

32.  
i

Ци­линдр, осе­вым се­че­ни­ем ко­то­ро­го яв­ля­ет­ся квад­рат, впи­сан в шар, ра­ди­ус ко­то­ро­го равен 4. Уста­но­ви­те со­от­вет­ствие между вы­со­той ци­лин­дра, его объ­е­мом и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Вы­со­та ци­лин­дра

Б) Объем ци­лин­дра

1) [176; 188)

2) (3; 5)

3) (5; 6)

4) (158; 161]

33.  
i

Най­ди­те два на­ту­раль­ных числа x и y, x > y, если из­вест­но, что сумма чисел x и y равна 7, а про­из­ве­де­ние этих чисел равно 12.

A) Число x при­над­ле­жит про­ме­жут­ку

Б) Число y при­над­ле­жит про­ме­жут­ку

1) [4; 5]

2) (1; 3]

3) (5; 6]

4) (0; 2)

34.  
i

Даны урав­не­ния x в квад­ра­те плюс 8x минус 9 = 0 и 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка = 32. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) −9, 3, 1

2) −1, 0, 2

3) −9, 4, 1

4) 7, 8, 9

35.  
i

Вы­пи­са­но не­сколь­ко пер­вых чле­нов гео­мет­ри­че­ской про­грес­сии: −1024; −256; −64; … Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b5

Б) S5

1) 4

2) −4

3) −1362

4) −1364

36.  
i

Зна­че­ние вы­ра­же­ния 8 ко­рень из 3 плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: 192 конец ар­гу­мен­та равно:

1) 16 ко­рень из 3
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 195 конец ар­гу­мен­та
3) 9 ко­рень из 3
4)  дробь: чис­ли­тель: 65 ко­рень из: на­ча­ло ар­гу­мен­та: 195 конец ар­гу­мен­та , зна­ме­на­тель: 8 конец дроби
5)  дробь: чис­ли­тель: 6 ко­рень из 3 , зна­ме­на­тель: 8 конец дроби
6)  ко­рень из: на­ча­ло ар­гу­мен­та: 243 конец ар­гу­мен­та
37.  
i

Зна­че­ние вы­ра­же­ния  синус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс альфа пра­вая круг­лая скоб­ка минус ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби минус альфа пра­вая круг­лая скоб­ка равно

1)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2) 0
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
5) –1
6) 1
38.  
i

Eсли в ариф­ме­ти­че­ской про­грес­сии {an}, a7 = 21, S7 = 105, то най­ди­те d, a1, a5.

1) 13
2) 11
3) 9
4) 3
5) 2
6) 17
39.  
i

Най­ди­те от­но­ше­ние  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни x умно­жить на 3 в сте­пе­ни y = 27,10 в сте­пе­ни левая круг­лая скоб­ка \lg левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка =5. конец си­сте­мы .

1)  минус левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
2) 4
3) 8
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
5) 1
6) −4
40.  
i

В ци­лин­дре, пло­щадь ос­но­ва­ния ко­то­ро­го равна 48 (при­нять  Пи \approx3), про­ве­де­но осе­вое се­че­ние. AC  — диа­го­наль осе­во­го се­че­ния ци­лин­дра. Из ниже пе­ре­чис­лен­ных от­ве­тов най­ди­те те, ко­то­рые яв­ля­ют­ся де­ли­те­ля­ми зна­че­ния пло­ща­ди бо­ко­вой по­верх­но­сти ци­лин­дра.

1) 6
2) 8
3) 9
4) 34
5) 65
6) 96