Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 14881
1.  
i

Вы­пол­ни­те дей­ствия: 0,45:0,09 плюс 36:1,2 минус 18,63.

1) 14,37
2) 16,37
3) 8,37
4) 25,37
2.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: a в сте­пе­ни левая круг­лая скоб­ка минус 11 пра­вая круг­лая скоб­ка умно­жить на a в сте­пе­ни 4 , зна­ме­на­тель: a в сте­пе­ни левая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка конец дроби   и най­ди­те его зна­че­ние при a= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби . В от­ве­те за­пи­ши­те по­лу­чен­ное число.

1) 16
2) 8
3) 2
4) 4
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 8 синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби умно­жить на ко­си­нус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2) 1
3) −2
4) 2
4.  
i

Пре­об­ра­зуй­те вы­ра­же­ние 4x в квад­ра­те минус 4x плюс 2, вы­де­лив пол­ный квад­рат.

1)  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те минус 1
2)  левая круг­лая скоб­ка 2x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те минус 1
3)  левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те плюс 1
4)  левая круг­лая скоб­ка 2x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те плюс 1
5.  
i

Ре­ши­те урав­не­ние:  дробь: чис­ли­тель: 2 x в квад­ра­те плюс 15 x плюс 25, зна­ме­на­тель: 5 плюс x конец дроби =0.

1) −0,4
2) −2,5 и −5
3) −2,5
4) −0,4 и −5
6.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний x минус 5y = минус 21, x плюс y = минус 9. конец си­сте­мы .

1) (−11; 2)
2) (−7; 3)
3) (11; −2)
4) (−10; 1)
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка ко­си­нус левая круг­лая скоб­ка 5x минус 3 пра­вая круг­лая скоб­ка минус синус левая круг­лая скоб­ка дробь: чис­ли­тель: 8x, зна­ме­на­тель: 3 конец дроби минус 4 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби ко­си­нус левая круг­лая скоб­ка 5x минус 3 пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 3, зна­ме­на­тель: 8 конец дроби синус левая круг­лая скоб­ка дробь: чис­ли­тель: 8x, зна­ме­на­тель: 3 конец дроби минус 4 пра­вая круг­лая скоб­ка плюс C
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби синус левая круг­лая скоб­ка 5x минус 3 пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 8 конец дроби ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 8x, зна­ме­на­тель: 3 конец дроби минус 4 пра­вая круг­лая скоб­ка плюс C
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби синус левая круг­лая скоб­ка 5x минус 3 пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 3, зна­ме­на­тель: 8 конец дроби ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 8x, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс C
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби синус левая круг­лая скоб­ка 5x минус 3 пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 3, зна­ме­на­тель: 8 конец дроби ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 8x, зна­ме­на­тель: 3 конец дроби минус 4 пра­вая круг­лая скоб­ка плюс C
8.  
i

Из пол­но­го бо­ка­ла, име­ю­ще­го форму ко­ну­са вы­со­той 9, от­ли­ли треть (по объ­е­му) жид­ко­сти. Вы­чис­ли­те  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби h в кубе , где h  — вы­со­та остав­шей­ся жид­ко­сти.

1) 324
2) 182
3) 27
4) 243
9.  
i

Най­ди­те наи­боль­шее целое ре­ше­ние си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний |x плюс 2| мень­ше или равно 8, дробь: чис­ли­тель: x в квад­ра­те минус 6x плюс 5, зна­ме­на­тель: x в квад­ра­те минус 5 конец дроби боль­ше 1. конец си­сте­мы .

1) 2
2) 5
3) 6
4)  ко­рень из 5
10.  
i

Ре­ши­те урав­не­ние:  ко­си­нус левая круг­лая скоб­ка 4x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка =1.

1)
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс Пи k
3)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 2 конец дроби
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =e в сте­пе­ни левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка минус e в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка 1;3 пра­вая круг­лая скоб­ка .

1) e в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка плюс 3 плюс e плюс дробь: чис­ли­тель: e в квад­ра­те , зна­ме­на­тель: 2 конец дроби
2) e в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус e в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка плюс 3 минус e плюс дробь: чис­ли­тель: e в квад­ра­те , зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка плюс 3 минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби e в кубе плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби e в квад­ра­те
4) e в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби e в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка минус 3 минус e плюс дробь: чис­ли­тель: e в квад­ра­те , зна­ме­на­тель: 2 конец дроби
12.  
i

Из дан­ных пар чисел (x; y), вы­бе­ри­те ту, ко­то­рая не удо­вле­тво­ря­ет ре­ше­нию не­ра­вен­ства: 4x минус 5 боль­ше или равно y.

1) (−3; −4)
2) (5; 2)
3) (3; −1)
4) (1; −4)
13.  
i

Сред­няя линия MN, па­рал­лель­ная сто­ро­не AC, равна по­ло­ви­не сто­ро­ны AB. Най­ди­те угол ABC, если угол BMN равен 70 гра­ду­сов .

1) 35°
2) 70°
3) 110°
4) 55°
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 0 до 5, дробь: чис­ли­тель: 6, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3x плюс 1 конец ар­гу­мен­та конец дроби dx.

1) 5
2)  дробь: чис­ли­тель: 6, зна­ме­на­тель: 13 конец дроби
3) 14
4) 12
15.  
i

Най­ди­те объем пра­виль­ной че­ты­рех­уголь­ной усе­чен­ной пи­ра­ми­ды, если сто­ро­ны ее ос­но­ва­ния 1 см и 9 см, а вы­со­та 6 см.

1) 162 см3
2) 182 см3
3) 152 см3
4) 180 см3
16.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния 4 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка плюс 128=3 в сте­пе­ни левая круг­лая скоб­ка 1 минус x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 12 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка .

1) −4
2) −3
3)  минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4) 3
17.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 3 x плюс ло­га­рифм по ос­но­ва­нию 3 y = 1, y плюс 2x = 7. конец си­сте­мы .

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 4 пра­вая круг­лая скоб­ка , левая круг­лая скоб­ка 2; 1 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 1; 6 пра­вая круг­лая скоб­ка , левая круг­лая скоб­ка 2; 1 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 6 пра­вая круг­лая скоб­ка , левая круг­лая скоб­ка 3; 1 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 3 пра­вая круг­лая скоб­ка , левая круг­лая скоб­ка 2; 2 пра­вая круг­лая скоб­ка
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной па­ра­бо­ла­ми: y= левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те ,y= минус левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка в квад­ра­те , минус 2 мень­ше или равно x мень­ше или равно 2.

1) 128
2)  дробь: чис­ли­тель: 256, зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 128, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 64, зна­ме­на­тель: 3 конец дроби
19.  
i

Внут­рен­ний угол пра­виль­но­го мно­го­уголь­ни­ка равен 172°. Ко­ли­че­ство сто­рон дан­но­го мно­го­уголь­ни­ка равно

1) 24
2) 45
3) 18
4) 36
20.  
i

В ариф­ме­ти­че­ской про­грес­сии сумма a_4 плюс a_6 = 20. Най­ди­те пятый член дан­ной про­грес­сии.

1) 15
2) 14
3) 10
4) 18
21.  
i

Век­тор \overrightarrowAB с на­ча­лом в точке A(2; –4) имеет ко­ор­ди­на­ты (6; –5). Най­ди­те ко­ор­ди­на­ты точки B.

1) (4; −9)
2) (9; −10)
3) (8; −9)
4) (8; −7)
22.  
i

Со­кра­ти­те дробь:  дробь: чис­ли­тель: a в квад­ра­те плюс b в квад­ра­те плюс 2ab минус 9, зна­ме­на­тель: a в квад­ра­те плюс ab минус 3a конец дроби .

1)  дробь: чис­ли­тель: a плюс b минус 3, зна­ме­на­тель: a конец дроби
2)  дробь: чис­ли­тель: a плюс b плюс 3, зна­ме­на­тель: b конец дроби
3)  дробь: чис­ли­тель: a минус b плюс 3, зна­ме­на­тель: a конец дроби
4)  дробь: чис­ли­тель: a плюс b плюс 3, зна­ме­на­тель: a конец дроби
23.  
i

Ре­ши­те урав­не­ние x в сте­пе­ни левая круг­лая скоб­ка 3 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 81 конец дроби .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби ; 5
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; 81
24.  
i

Ре­ши­те не­ра­вен­ство: 2 синус x минус 1 боль­ше 0.

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи n ; дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби плюс m пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи n ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи n ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи n ; дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби ,x_0=4.

1) y = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2) y = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 16 конец дроби x минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3) y = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 16 конец дроби x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4) y = дробь: чис­ли­тель: 1, зна­ме­на­тель: 16 конец дроби x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
26.  
i

Mишень в тире раз­де­ле­на на три сек­то­ра раз­но­го цвета: го­лу­бой, крас­ный и жел­тый. Два стрел­ка, стре­ляя по ми­ше­ни, все­гда по­ра­жа­ют один из сек­то­ров. Ве­ро­ят­ность по­па­да­ния пер­во­го стрел­ка в крас­ную часть ми­ше­ни равна 0,45, а в го­лу­бую — 0,35. Ве­ро­ят­ность по­па­да­ния в жел­тую часть ми­ше­ни вто­ро­го стрел­ка равна 0,7.

Hай­ди­те ве­ро­ят­ность того, что пер­вый стре­лок попал в крас­ную или го­лу­бую часть ми­ше­ни.

1) 0,8
2) 0,35
3) 0,26
4) 0,2
27.  
i

Цир­ко­вой шатер имеет форму ци­лин­дра с по­став­лен­ным на него усе­чен­ным ко­ну­сом. Диа­метр ос­но­ва­ния ци­лин­дра равен 5 м, диа­метр верх­не­го ос­но­ва­ния усе­чен­но­го ко­ну­са равен 1 м. Вы­со­ты ци­лин­дра и усе­чен­но­го ко­ну­са равны 2 м.

Ра­ди­ус ниж­не­го ос­но­ва­ния шатра равен?

1) 1,5 м
2) 2,5 м
3) 2 м
4) 1 м
28.  
i

Mишень в тире раз­де­ле­на на три сек­то­ра раз­но­го цвета: го­лу­бой, крас­ный и жел­тый. Два стрел­ка, стре­ляя по ми­ше­ни, все­гда по­ра­жа­ют один из сек­то­ров. Ве­ро­ят­ность по­па­да­ния пер­во­го стрел­ка в крас­ную часть ми­ше­ни равна 0,45, а в го­лу­бую — 0,35. Ве­ро­ят­ность по­па­да­ния в жел­тую часть ми­ше­ни вто­ро­го стрел­ка равна 0,7.

Hай­ди­те ве­ро­ят­ность того, что пер­вый стре­лок по­ра­зил жел­тую часть ми­ше­ни, а вто­рой стре­лок не попал в жел­тую часть ми­ше­ни.

1) 0,05
2) 0,6
3) 0,06
4) 0,08
29.  
i

Стро­и­тель­ной ком­па­нии дали за­да­ние по­стро­ить дет­скую иг­ро­вую пло­щад­ку, в ко­то­рой дол­жен быть домик в виде башни. Ко­ни­че­ская крыша башни имеет диа­метр 6 м и вы­со­ту 2 м. Для этого ку­пи­ли листы кро­вель­но­го же­ле­за раз­ме­ра­ми 0,7 м × 1,4 м. На швы и об­рез­ки тра­тит­ся 10 % от пло­ща­ди крыши.

Какое ко­ли­че­ство ли­стов по­на­до­бит­ся для башни?

1) 34
2) 30
3) 32
4) 38
30.  
i

Mишень в тире раз­де­ле­на на три сек­то­ра раз­но­го цвета: го­лу­бой, крас­ный и жел­тый. Два стрел­ка, стре­ляя по ми­ше­ни, все­гда по­ра­жа­ют один из сек­то­ров. Ве­ро­ят­ность по­па­да­ния пер­во­го стрел­ка в крас­ную часть ми­ше­ни равна 0,45, а в го­лу­бую — 0,35. Ве­ро­ят­ность по­па­да­ния в жел­тую часть ми­ше­ни вто­ро­го стрел­ка равна 0,7.

Пер­вый стре­лок про­из­вел 5 вы­стре­лов по ми­ше­ни. С какой ве­ро­ят­но­стью он ровно 3 раза по­ра­зил жел­тую часть ми­ше­ни?

1) 0,0512
2) 0,512
3) 0,2048
4) 0,248
31.  
i

Квад­ра­тич­ная функ­ция за­да­на урав­не­ни­ем y = минус x в квад­ра­те плюс 2x плюс 3. Уста­но­ви­те со­от­вет­ствие между ну­ля­ми функ­ции и ко­ор­ди­на­та­ми вер­ши­ны па­ра­бо­лы.

A)  Нули функ­ции

Б)  Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1)  (1; 4)

2)  {−1; 3}

3)  (−2; −1)

4)  {1; 3}

32.  
i

Пло­щадь диа­мет­раль­но­го се­че­ния шара равна 3. Уста­но­ви­те со­от­вет­ствие между ра­ди­у­сом шара, пло­ща­дью его по­верх­но­сти и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Ра­ди­ус шара

Б) Пло­щадь по­верх­но­сти шара

1) (3; 5)

2) [10; 14)

3) (0; 1]

4) (7; 10)

33.  
i

Най­ди­те два числа x и y, x боль­ше 1 боль­ше y, если из­вест­но, что раз­ность чисел x и y равна 6, а раз­ность кубов этих чисел равна 126.

A) Число x при­над­ле­жит про­ме­жут­ку

Б) Число y при­над­ле­жит про­ме­жут­ку

1) (1; 2)

2) [−1; 0]

3) (2; 3)

4) [5; 9)

34.  
i

Даны урав­не­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: 6 минус x конец ар­гу­мен­та и x в квад­ра­те минус 9x плюс 14 = 0. Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния, но не яв­ля­ет­ся кор­нем пер­во­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) 2

2) 1

3) 4

4) 7

35.  
i

Вы­пи­са­но не­сколь­ко по­сле­до­ва­тель­ных чле­нов гео­мет­ри­че­ской про­грес­сии: …; 1,75; x ; 28; −112; … Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) q

Б) x

1) −7

2) −4

3) −3

4) −10

2

Вы­бе­ри­те все про­ме­жут­ки, ко­то­рым при­над­ле­жит зна­че­ние вы­ра­же­ния 4 левая круг­лая скоб­ка 1,5x плюс 1 пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка 2,1 минус 3x пра­вая круг­лая скоб­ка минус 0,9 при x  =  1.

1) [5; 7)
2) [1; 4)
3) (8; 10]
4) [7; 8]
5) (10; 13)
6) [9; 11)
37.  
i

Зна­че­ние вы­ра­же­ния 6 синус в квад­ра­те дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 8 конец дроби плюс 6 ко­си­нус в квад­ра­те дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 8 конец дроби равно

1) 0
2) −6
3) 6
4) 3
5) −3
6) 4
38.  
i

В ариф­ме­ти­че­ской про­грес­сии сумма пер­вых пят­на­дца­ти ее чле­нов на 8 мень­ше суммы пер­вых две­на­дца­ти чле­нов. Най­ди­те че­тыр­на­дца­тый член про­грес­сии и сумму пер­вых 27 ее чле­нов.

1) 14
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: 8, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби
5) −64
6) −72
39.  
i

Ре­ши­те си­сте­му ра­ци­о­наль­ных урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2x минус 3y конец дроби плюс дробь: чис­ли­тель: 2, зна­ме­на­тель: 3x минус 2y конец дроби = дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби , новая стро­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2x минус 3y конец дроби минус дробь: чис­ли­тель: 4, зна­ме­на­тель: 3x минус 2y конец дроби =1. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: y, зна­ме­на­тель: x конец дроби .

1) 2
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 4 конец дроби
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 6 конец дроби
4)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
5)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 8 конец дроби
6)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
40.  
i

Пря­мо­уголь­ный тре­уголь­ник с ги­по­те­ну­зой 6 и ост­рым углом 15° вра­ща­ет­ся во­круг пря­мой, со­дер­жа­щей ги­по­те­ну­зу, когда чис­ло­вое зна­че­ние объ­е­ма тела вра­ще­ния на­хо­дит­ся на про­ме­жут­ке:

1)  левая квад­рат­ная скоб­ка 2 Пи ; 8 Пи пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка 10 Пи ; 16 Пи пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка 12 Пи ; 18 Пи пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка 4 Пи ; 14 Пи пра­вая квад­рат­ная скоб­ка
5)  левая квад­рат­ная скоб­ка 3 Пи ; 7 Пи пра­вая квад­рат­ная скоб­ка
6)  левая квад­рат­ная скоб­ка 5 Пи ; 15 Пи пра­вая квад­рат­ная скоб­ка