Каталог заданий.
Задания для подготовки
Версия для печати и копирования в MS Word
1
Тип 23 № 1971
i

Ре­ши­те урав­не­ние: 4 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка 2x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2x минус 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка = 2 ко­рень 3 сте­пе­ни из 2 .



2
Тип 23 № 1991
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: 2 минус ло­га­рифм по ос­но­ва­нию 2 x конец ар­гу­мен­та = ло­га­рифм по ос­но­ва­нию 2 x.



3
Тип 23 № 2481
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка тан­генс x плюс 4 пра­вая круг­лая скоб­ка = 2.



4
Тип 23 № 3217
i

Ре­ши­те урав­не­ние x в сте­пе­ни левая круг­лая скоб­ка 3 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 81 конец дроби .



5

Pешите урав­не­ние  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 2 конец ар­гу­мен­та конец дроби пра­вая круг­лая скоб­ка 5 плюс 2=0, в от­ве­те за­пи­ши­те про­из­ве­де­ние кор­ней или ко­рень, если он един­ствен­ный.



6

Сумма кор­ней (или ко­рень, если он один) урав­не­ния 2 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 x пра­вая круг­лая скоб­ка =108 минус x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 6 пра­вая круг­лая скоб­ка равна ...



7

Сумма кор­ней (или ко­рень, если он один) урав­не­ния 2 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 x пра­вая круг­лая скоб­ка =96 минус 2 умно­жить на x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 2 пра­вая круг­лая скоб­ка равна ...



8
Тип 23 № 6966
i

Пусть x0  — наи­боль­ший ко­рень урав­не­ния \log в квад­ра­те _2 левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 32 конец дроби пра­вая круг­лая скоб­ка плюс 4 ло­га­рифм по ос­но­ва­нию 2 x минус 52=0, тогда зна­че­ние вы­ра­же­ния 7 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x_0 конец ар­гу­мен­та равно ...



9
Тип 23 № 6967
i

Пусть x0  — наи­боль­ший ко­рень урав­не­ния \log в квад­ра­те _9 левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 81 конец дроби пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 9 x минус 22=0, тогда зна­че­ние вы­ра­же­ния 3 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x_0 конец ар­гу­мен­та равно ...



10
Тип 23 № 7920
i

Ре­ши­те урав­не­ние: 9 в сте­пе­ни левая круг­лая скоб­ка \log пра­вая круг­лая скоб­ка _9 левая круг­лая скоб­ка 4x минус 4 пра­вая круг­лая скоб­ка =x в квад­ра­те минус 1.



11
Тип 23 № 7921
i

Ре­ши­те урав­не­ние: \log _ дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби левая круг­лая скоб­ка минус 2 минус 3x пра­вая круг­лая скоб­ка =\log _ дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби левая круг­лая скоб­ка x в квад­ра­те минус 2 пра­вая круг­лая скоб­ка .



12
Тип 23 № 7922
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка x в квад­ра­те плюс 4\log _4 левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка плюс 1=0.



13
Тип 23 № 7923
i

Ре­ши­те урав­не­ние \log _5 левая круг­лая скоб­ка 2 минус \log _2 левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка =1.



14
Тип 23 № 7924
i

Ре­ши­те урав­не­ние \log _2\log _3 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =2.



15
Тип 23 № 8006
i

Ре­ши­те урав­не­ние \log _3x минус 14=2.



16
Тип 23 № 8007
i

Ре­ши­те урав­не­ние \log _x левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка =0,5.



17
Тип 23 № 8008
i

Ре­ши­те урав­не­ние \log _1 плюс x левая круг­лая скоб­ка 2x в кубе плюс 2x в квад­ра­те минус 3x плюс 1 пра­вая круг­лая скоб­ка =3.



18
Тип 23 № 8009
i

Ре­ши­те урав­не­ние \log _5 дробь: чис­ли­тель: 2 плюс x, зна­ме­на­тель: 10 конец дроби =\log _5 дробь: чис­ли­тель: 2, зна­ме­на­тель: x плюс 1 конец дроби .



19
Тип 23 № 8010
i

Ре­ши­те урав­не­ние  де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка = де­ся­тич­ный ло­га­рифм дробь: чис­ли­тель: x плюс 2, зна­ме­на­тель: x минус 3 конец дроби .



20
Тип 23 № 8011
i

Ре­ши­те урав­не­ние \log _5 левая круг­лая скоб­ка x минус 8 пра­вая круг­лая скоб­ка в квад­ра­те =2 плюс 2\log _5 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка .



21
Тип 23 № 8028
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те = ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка 4x минус 15 пра­вая круг­лая скоб­ка .



22
Тип 23 № 8081
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те = ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка 3x плюс 7 пра­вая круг­лая скоб­ка .



23
Тип 23 № 8146
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию 3 x плюс ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка = 1.



24
Тип 23 № 8153
i

Ука­жи­те про­из­ве­де­ние кор­ней урав­не­ния: x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 4 x плюс 1 пра­вая круг­лая скоб­ка = 6 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 6 16 пра­вая круг­лая скоб­ка .



25
Тип 23 № 8186
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка = 2.



26
Тип 23 № 8193
i

Ука­жи­те про­из­ве­де­ние кор­ней урав­не­ния: x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 x плюс 1 пра­вая круг­лая скоб­ка = 5 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 5 9 пра­вая круг­лая скоб­ка .



27
Тип 23 № 8246
i

Ука­жи­те про­из­ве­де­ние кор­ней урав­не­ния:  x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 x плюс 1 пра­вая круг­лая скоб­ка = 5 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 5 49 пра­вая круг­лая скоб­ка .


Завершить работу, свериться с ответами, увидеть решения.