Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Задания Д35 A35. Задания реальной версии ЕНТ 2021 года на позиции 35

В пря­мой пра­виль­ной ше­сти­уголь­ной приз­ме ABCDEFA1B1C1D1E1F1 имеем B_1D = 8 ко­рень из 3 и \angleB_1DB = 45 гра­ду­сов. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти и пло­щадь пол­ной по­верх­но­сти дан­ной приз­мы.

1) 768 ко­рень из 3
2) 228 ко­рень из 3
3) 288 ко­рень из 3
4) 384 ко­рень из 6
5) 288 ко­рень из 2
6) 192 ко­рень из 3
7) 576 ко­рень из 6
8) 384 ко­рень из 2
2.  
i

Ско­рость дви­же­ния тела вы­ра­же­на сле­ду­ю­щим урав­не­ни­ем 1= дробь: чис­ли­тель: 2 t умно­жить на s в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка , зна­ме­на­тель: 9 t в кубе плюс 8 t в квад­ра­те конец дроби . Опре­де­ли­те фор­му­лу за­ви­си­мо­сти пути от вре­ме­ни, если при t=2 ч тело про­хо­дит 36 км.

1) s левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = 1,5t в кубе плюс 2t в квад­ра­те минус 16
2) s левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = 1,5t в кубе плюс 2t в квад­ра­те плюс 14
3) s левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = 1,5t в кубе плюс 2t в квад­ра­те минус 20
4) s левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = 1,5t в кубе минус 2t в квад­ра­те плюс 16
5) s левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = 1,5t в кубе плюс 2t в квад­ра­те минус 16
6) s левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = 1,5t в кубе плюс 2t в квад­ра­те плюс 20
7) s левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = 1,5t в кубе плюс 2t в квад­ра­те плюс 16
8) s левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = 1,5t в кубе плюс t в квад­ра­те плюс 16
3.  
i

При дви­же­нии тела по пря­мой рас­сто­я­ние s (в мет­рах) из­ме­ня­ет­ся по за­ко­ну s левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: t в квад­ра­те , зна­ме­на­тель: 2 конец дроби минус дробь: чис­ли­тель: 2, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: t конец ар­гу­мен­та конец дроби (t — время из­ме­ря­ет­ся в се­кун­дах). Най­ди­те ско­рость тела через 4 с после на­ча­ла дви­же­ния.

1)  целая часть: 4, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 8 м/с
2) 4,325 м/с
3)  дробь: чис­ли­тель: 33, зна­ме­на­тель: 8 конец дроби м/с
4)  целая часть: 4, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 8 м/с
5) 4,025 м/с
6) 4,125 м/с
7)  целая часть: 4, дроб­ная часть: чис­ли­тель: 5, зна­ме­на­тель: 8 м/с
8) 4,25 м/с
4.  
i

Cко­рость дви­же­ния ма­те­ри­аль­ной точки ме­ня­ет­ся по за­ко­ну  v левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = синус t ко­си­нус t. Най­ди­те закон дви­же­ния ма­те­ри­аль­ной точки, если при t = дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби , прой­ден­ный путь равен 3.

1) x левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка =0,5 ко­си­нус t плюс 3
2) x левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = минус 0,25 синус t плюс 4
3) x левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = минус 0,25 синус 2 t плюс 1
4) x левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка =0,25 ко­си­нус 2 t плюс 1
5) x левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка =0,5 ко­си­нус 2 t плюс 5
6) x левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка =0,2 ко­си­нус t плюс 5
7) x левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = минус 0,25 ко­си­нус 2 t плюс 3
8) x левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = минус 0,25 синус 2 t плюс 3
5.  
i

Вы­бе­ри­те из ни­же­пе­ре­чис­лен­ных от­ве­тов де­ли­те­ли числа, рав­но­го зна­че­нию пло­ща­ди бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы, опи­сан­ной около ци­лин­дра, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен  ко­рень из 3 , а вы­со­та равна 3.

1) 12
2) 27
3) 3
4) 9
5) 24
6) 17
7) 8
8) 14
6.  
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де ABCDF все ребра равны 1. Най­ди­те зна­че­ние угла между реб­ром FD и плос­ко­стью ос­но­ва­ния.

1) 45°
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
5) 60°
6)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
7) 90°
8) 30°

Сто­ро­ны ос­но­ва­ния пря­мо­го па­рал­ле­ле­пи­пе­да равны 6 дм и 8 дм. Из­вест­но, что мень­шая диа­го­наль па­рал­ле­ле­пи­пе­да равна 9 дм, а одна из диа­го­на­лей ос­но­ва­ния равна 12 дм. Най­ди­те бо­ко­вое ребро и боль­шую диа­го­наль пря­мо­го па­рал­ле­ле­пи­пе­да.

1) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та дм
2) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та дм
3) 5 дм
4) 13 дм
5) 6 дм
6) 8 дм
7) 10 дм
8)  ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та дм

В пра­виль­ной тре­уголь­ной приз­ме все ребра равны 1. Точка K — се­ре­ди­на ребра AC. Най­ди­те ко­ор­ди­на­ты век­то­ров \overrightarrowAK и  \overrightarrowFB.

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 0; 1 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 1 ; дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби ; минус 1 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус 1 ; минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби ; 1 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби ; 0 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби ; 1 пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби ; 1 пра­вая круг­лая скоб­ка
7)  левая круг­лая скоб­ка минус 1 ; 0 ; 1 пра­вая круг­лая скоб­ка
8)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; 0 ; 1 пра­вая круг­лая скоб­ка
9.  
i

Дан тре­уголь­ник АВС, у ко­то­ро­го АВ = 15 м, ВС = 18 м и АС = 12 м. Най­ди­те длину бис­сек­три­сы АD.

1) 11 м
2) 12 м
3) 6 м
4) 14 м
5) 8 м
6) 10 м
7) 15 м
8) 9 м
10.  
i

Через вер­ши­ну остро­го угла пря­мо­уголь­но­го тре­уголь­ни­ка ABC с пря­мым углом C про­ве­де­на пря­мая AD, пер­пен­ди­ку­ляр­ная плос­ко­сти тре­уголь­ни­ка. Най­ди­те рас­сто­я­ние от точки D до вер­ши­ны B, если AC = 8, BC = 9 и AD = 10.

1) 7 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 145 конец ар­гу­мен­та
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 245 конец ар­гу­мен­та
4) 132
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 125 конец ар­гу­мен­та
6) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
7) 175
8) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та
11.  
i

В пра­виль­ной ше­сти­уголь­ной пи­ра­ми­де SABCDEF с вер­ши­ной S сто­ро­на ос­но­ва­ния равна  ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , а бо­ко­вое ребро равно 2 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та . Най­ди­те угол между реб­ра­ми AS и SD.

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
3) 60°
4) 45°
5) 90°
6) 30°
7)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
8)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
12.  
i

Дано: SABCD пи­ра­ми­да, SO — вы­со­та, ABCD — тра­пе­ция, AB = 9, CD = 4, AD = BC, O — центр впи­сан­ной окруж­но­сти, \angle SEO = 45 гра­ду­сов . Вы­чис­ли­те пло­щадь пол­ной по­верх­но­сти пи­ра­ми­ды.

1) 2 плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
2) 4 левая круг­лая скоб­ка 22 плюс 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
3) 39 левая круг­лая скоб­ка 1 минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
4) 11 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
5) 1 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
6) 17
7) 39
8) 39 левая круг­лая скоб­ка 1 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
1) 306 Пи
2)  дробь: чис­ли­тель: 200, зна­ме­на­тель: 3 конец дроби Пи
3)  дробь: чис­ли­тель: 500, зна­ме­на­тель: 3 конец дроби Пи
4) 208 Пи
5)  дробь: чис­ли­тель: 100, зна­ме­на­тель: 3 конец дроби Пи
6) 108 Пи
7) 250 Пи
8) 100 Пи
14.  
i

Ос­но­ва­ни­ем пря­мой приз­мы слу­жит рав­но­бед­рен­ная тра­пе­ция ABCD со сто­ро­на­ми AB = CD = 13 см, BC = 11 см, AD = 21 см. Пло­щадь ее диа­го­наль­но­го се­че­ния равна 180 см2. Най­ди­те пло­щадь пол­ной по­верх­но­сти приз­мы.

1) 522 см2
2) 256 см2
3) 144 см2
4) 1528 см2
5) 1728 см2
6) 129 см2
7) 192 см2
8) 906 см2
15.  
i

Cумма двух сто­рон тре­уголь­ни­ка равна 15, а тре­тью сто­ро­ну бис­сек­три­са делит в от­но­ше­нии 2 : 3. Най­ди­те пе­ри­метр тре­уголь­ни­ка, если угол между сто­ро­ной тре­уголь­ни­ка и бис­сек­три­сой, ис­хо­дя­щих из одной вер­ши­ны, равен 30°.

1) 3 левая круг­лая скоб­ка 5 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
2) 20
3) 15 плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
4) 15 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
5) 5 плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
6)  15 минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
7) 18
8) 3 левая круг­лая скоб­ка 5 минус ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
16.  
i

Даны век­то­ры \veca левая круг­лая скоб­ка 5; 3 пра­вая круг­лая скоб­ка ,  \vecb левая круг­лая скоб­ка 4; минус 1 пра­вая круг­лая скоб­ка . Най­ди­те мо­дуль раз­но­сти век­то­ров \vecp и \vecq, если  \vecp=\veca плюс \vecb и  \vecq=\veca минус \vecb.

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та
2) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та
3) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 17 конец ар­гу­мен­та
4) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
5) 13
6) 8
7) 10
8) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та
17.  
i

Две точки с абс­цис­са­ми x_1=1 и x_2=3 при­над­ле­жит па­ра­бо­ле за­дан­ной фор­му­лой y=x в квад­ра­те минус 4. Через точки про­ве­де­на пря­мая. В какой точке па­ра­бо­лы ка­са­тель­ная будет па­рал­лель­на про­ве­ден­ной пря­мой.

1) (−3; 5)
2) (−2; 0)
3) (1; −3)
4) (2; 0)
5) (3; 5)
6) (4; 12)
7) (−1; −3)
8) (0; 4)
18.  
i

Уча­сток пря­мо­уголь­ной формы пло­ща­дью 800 м2 ого­ро­жен за­бо­ром с трех сто­рон. Опре­де­ли­те длины сто­рон участ­ка и наи­мень­шую длину ого­ро­жен­но­го за­бо­ра.

1) 120 м
2) 10 м
3) 170 м
4) 150 м
5) 80 м
6) 20 м
7) 40 м
8) 100 м
19.  
i

Опре­де­ли­те, при каком зна­че­нии a ка­са­тель­ная к па­ра­бо­ле y=ax в квад­ра­те плюс x минус 3 в точке M левая круг­лая скоб­ка 1; a минус 2 пра­вая круг­лая скоб­ка па­рал­лель­на пря­мой, за­дан­ной фор­му­лой y минус 2x=12.

1) −1
2)  целая часть: 1, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3
3) 1
4)  целая часть: 2, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3
5)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6)  минус целая часть: 1, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3
7)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
8)  минус целая часть: 2, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3
20.  
i

Пря­мая OO1 — ось ци­лин­дра. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра, если пло­щадь CC1E1E равна Q.

1) 2πQ
2) πQ
3)  дробь: чис­ли­тель: Пи Q, зна­ме­на­тель: 2 конец дроби
4) 1
5) 4πQ
6) 3πQ
7)  дробь: чис­ли­тель: Пи Q, зна­ме­на­тель: 4 конец дроби
8)  дробь: чис­ли­тель: Пи Q, зна­ме­на­тель: 3 конец дроби
21.  
i

Пря­мо­уголь­ный тре­уголь­ник с ги­по­те­ну­зой 6 и ост­рым углом 15° вра­ща­ет­ся во­круг пря­мой, со­дер­жа­щей ги­по­те­ну­зу, когда чис­ло­вое зна­че­ние объ­е­ма тела вра­ще­ния на­хо­дит­ся на про­ме­жут­ке:

1)  левая квад­рат­ная скоб­ка 2 Пи ; 8 Пи пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка 10 Пи ; 16 Пи пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка 12 Пи ; 18 Пи пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка 4 Пи ; 14 Пи пра­вая квад­рат­ная скоб­ка
5)  левая квад­рат­ная скоб­ка 3 Пи ; 7 Пи пра­вая квад­рат­ная скоб­ка
6)  левая квад­рат­ная скоб­ка 5 Пи ; 15 Пи пра­вая квад­рат­ная скоб­ка
7)  левая квад­рат­ная скоб­ка 10,5 Пи ; 17,5 Пи пра­вая квад­рат­ная скоб­ка
8)  левая квад­рат­ная скоб­ка 5 Пи ; 8,5 Пи пра­вая квад­рат­ная скоб­ка
22.  
i

В конус с вы­со­той 15 см и ра­ди­у­сом 10 см впи­сан ци­линдр с вы­со­той 12 см. Най­ди­те объём ци­лин­дра.

1) 48 см3
2) 36π см3
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 98 конец ар­гу­мен­та Пи см в кубе
4) 98π см3
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 24 конец ар­гу­мен­та Пи см в кубе
6)  ко­рень из: на­ча­ло ар­гу­мен­та: 48 конец ар­гу­мен­та Пи см в кубе
7) 48π см3
8) 24π см3
23.  
i

В ос­но­ва­нии пря­мой приз­мы лежит рав­но­бед­рен­ная тра­пе­ция, тупой угол ко­то­рой равен 120°. Диа­го­наль тра­пе­ции яв­ля­ет­ся бис­сек­три­сой остро­го угла. Диа­го­наль приз­мы об­ра­зу­ет с ос­но­ва­ни­ем угол 45°. Мень­шее ос­но­ва­ние равно 4. Число V — объем приз­мы. Ука­жи­те не­чет­ные де­ли­те­ли числа V.

1) 1
2) 7
3) 11
4) 2
5) 15
6) 3
7) 5
8) 9
24.  
i

Дана SABCD пи­ра­ми­да, SO — вы­со­та, АВСD — пря­мо­уголь­ник. Вы­чис­ли­те пло­щадь пол­ной по­верх­но­сти пи­ра­ми­ды, если AD = 6, DC = 8 и SO = 4.

1) 8 левая круг­лая скоб­ка 11 плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
2) 11 плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) 15
4) 4 левая круг­лая скоб­ка 22 плюс 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
5) 16 левая круг­лая скоб­ка 2 плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
6) 17
7) 11 минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
8) 8 левая круг­лая скоб­ка 11 минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
25.  
i

Точка O — центр шара, точка O1 — центр круга — се­че­ния шара. Най­ди­те объем шара, если O1N = 6 и угол O1NO равен 30°.

1) 256 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та Пи
2) 85 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та Пи
3) 256 Пи
4) 128 ко­рень из: на­ча­ло ар­гу­мен­та: 12 конец ар­гу­мен­та Пи
5) 255 ко­рень из: на­ча­ло ар­гу­мен­та: 3 Пи конец ар­гу­мен­та
6) 16 ко­рень из: на­ча­ло ар­гу­мен­та: 256 конец ар­гу­мен­та Пи
7)  ко­рень из: на­ча­ло ар­гу­мен­та: 729 конец ар­гу­мен­та Пи
8)  ко­рень из: на­ча­ло ар­гу­мен­та: 324 конец ар­гу­мен­та 18 Пи
26.  
i

Объем ко­ну­са равен 27. На вы­со­те ко­ну­са лежит точка и делит её в от­но­ше­нии 2 : 1 счи­тая от вер­ши­ны. Через точку про­ве­де­но се­че­ние, ко­то­рое яв­ля­ет­ся ос­но­ва­ни­ем мень­ше­го ко­ну­са с той же вер­ши­ной. Най­ди­те объем мень­ше­го ко­ну­са.

1) 4
2) 6
3) 10
4) 8
5) 7
6) 9
7) 11
8) 12
27.  
i

Даны ко­ор­ди­на­ты вер­шин пря­мо­уголь­ни­ка ABCD: A (1; −1; 1), B (1; 3; 1), C (4; 3; 1), D (4; −1; 1). Най­ди­те ко­ор­ди­на­ты O — цен­тра пря­мо­уголь­ни­ка.

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби ; 1 ; 1 пра­вая круг­лая скоб­ка
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби левая круг­лая скоб­ка 5 ; минус 2 ; 2 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби ; минус 1 ; 1 пра­вая круг­лая скоб­ка
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби левая круг­лая скоб­ка 5 ; 2; 2 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка целая часть: 2, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2 ; 1 ; 1 пра­вая круг­лая скоб­ка
6)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби левая круг­лая скоб­ка 5 ; 2 ; минус 2 пра­вая круг­лая скоб­ка
7)  левая круг­лая скоб­ка целая часть: 2, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2 ; 1 ; 0 пра­вая круг­лая скоб­ка
8)  левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби ; 1 ; 0 пра­вая круг­лая скоб­ка