Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Задания для подготовки
1.  
i

Ре­ши­те урав­не­ние: 4 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка 2x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2x минус 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка = 2 ко­рень 3 сте­пе­ни из 2 .

1) 4
2) 3
3) 8
4) 9
2.  
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: 2 минус ло­га­рифм по ос­но­ва­нию 2 x конец ар­гу­мен­та = ло­га­рифм по ос­но­ва­нию 2 x.

1) 2
2) 4
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
3.  
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка тан­генс x плюс 4 пра­вая круг­лая скоб­ка = 2.

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k, k при­над­ле­жит Z
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k, k при­над­ле­жит Z
3)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k, k при­над­ле­жит Z
4)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k, k при­над­ле­жит Z
4.  
i

Ре­ши­те урав­не­ние x в сте­пе­ни левая круг­лая скоб­ка 3 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 81 конец дроби .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби ; 5
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; 81

Pешите урав­не­ние  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 2 конец ар­гу­мен­та конец дроби пра­вая круг­лая скоб­ка 5 плюс 2=0, в от­ве­те за­пи­ши­те про­из­ве­де­ние кор­ней или ко­рень, если он един­ствен­ный.

1) 4
2) 2
3) 1
4) 3

Сумма кор­ней (или ко­рень, если он один) урав­не­ния 2 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 x пра­вая круг­лая скоб­ка =108 минус x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 6 пра­вая круг­лая скоб­ка равна ...

1) 25
2) 49
3) 14
4) 36

Сумма кор­ней (или ко­рень, если он один) урав­не­ния 2 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 x пра­вая круг­лая скоб­ка =96 минус 2 умно­жить на x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 2 пра­вая круг­лая скоб­ка равна ...

1) 225
2) 189
3) 243
4) 144
8.  
i

Пусть x0  — наи­боль­ший ко­рень урав­не­ния \log в квад­ра­те _2 левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 32 конец дроби пра­вая круг­лая скоб­ка плюс 4 ло­га­рифм по ос­но­ва­нию 2 x минус 52=0, тогда зна­че­ние вы­ра­же­ния 7 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x_0 конец ар­гу­мен­та равно ...

1) 2
2) 8
3) 16
4) 56
9.  
i

Пусть x0  — наи­боль­ший ко­рень урав­не­ния \log в квад­ра­те _9 левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 81 конец дроби пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 9 x минус 22=0, тогда зна­че­ние вы­ра­же­ния 3 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x_0 конец ар­гу­мен­та равно ...

1) 9
2) 81
3) 169
4) 243
10.  
i

Ре­ши­те урав­не­ние: 9 в сте­пе­ни левая круг­лая скоб­ка \log пра­вая круг­лая скоб­ка _9 левая круг­лая скоб­ка 4x минус 4 пра­вая круг­лая скоб­ка =x в квад­ра­те минус 1.

1) 3
2) 1
3) 0
4) 2
11.  
i

Ре­ши­те урав­не­ние: \log _ дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби левая круг­лая скоб­ка минус 2 минус 3x пра­вая круг­лая скоб­ка =\log _ дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби левая круг­лая скоб­ка x в квад­ра­те минус 2 пра­вая круг­лая скоб­ка .

1) 0
2) −1
3) 3
4) −3
12.  
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка x в квад­ра­те плюс 4\log _4 левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка плюс 1=0.

1) 1
2)  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
13.  
i

Ре­ши­те урав­не­ние \log _5 левая круг­лая скоб­ка 2 минус \log _2 левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка =1.

1)  дробь: чис­ли­тель: 23, зна­ме­на­тель: 8 конец дроби
2)  дробь: чис­ли­тель: 25, зна­ме­на­тель: 8 конец дроби
3)  дробь: чис­ли­тель: 21, зна­ме­на­тель: 8 конец дроби
4)  дробь: чис­ли­тель: 15, зна­ме­на­тель: 8 конец дроби
14.  
i

Ре­ши­те урав­не­ние \log _2\log _3 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =2.

1) 27
2) 26
3) 80
4) 81
15.  
i

Ре­ши­те урав­не­ние \log _3x минус 14=2.

1) 2
2) 0
3) 1
4)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
16.  
i

Ре­ши­те урав­не­ние \log _x левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка =0,5.

1) 4
2) 1
3) 2
4) 5
17.  
i

Ре­ши­те урав­не­ние \log _1 плюс x левая круг­лая скоб­ка 2x в кубе плюс 2x в квад­ра­те минус 3x плюс 1 пра­вая круг­лая скоб­ка =3.

1) −2
2) 1
3) 0
4) 3
18.  
i

Ре­ши­те урав­не­ние \log _5 дробь: чис­ли­тель: 2 плюс x, зна­ме­на­тель: 10 конец дроби =\log _5 дробь: чис­ли­тель: 2, зна­ме­на­тель: x плюс 1 конец дроби .

1) 6
2) 3
3) 2
4) −6
19.  
i

Ре­ши­те урав­не­ние  де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка = де­ся­тич­ный ло­га­рифм дробь: чис­ли­тель: x плюс 2, зна­ме­на­тель: x минус 3 конец дроби .

1) 4
2) 2
3) −2
4) 1
20.  
i

Ре­ши­те урав­не­ние \log _5 левая круг­лая скоб­ка x минус 8 пра­вая круг­лая скоб­ка в квад­ра­те =2 плюс 2\log _5 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2) 3
3) 6
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
21.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те = ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка 4x минус 15 пра­вая круг­лая скоб­ка .

1) 4
2) 6
3) 12
4) 24
22.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те = ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка 3x плюс 7 пра­вая круг­лая скоб­ка .

1) −6
2) 6
3) −1
4) 1
23.  
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию 3 x плюс ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка = 1.

1) −3
2) −3; 1
3) 1
4) 2
24.  
i

Ука­жи­те про­из­ве­де­ние кор­ней урав­не­ния: x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 4 x плюс 1 пра­вая круг­лая скоб­ка = 6 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 6 16 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 16 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
3) 1
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
25.  
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка = 2.

1) 2
2) 3
3) 4
4) −2; 3
26.  
i

Ука­жи­те про­из­ве­де­ние кор­ней урав­не­ния: x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 x плюс 1 пра­вая круг­лая скоб­ка = 5 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 5 9 пра­вая круг­лая скоб­ка .

1) 1
2) 3
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
27.  
i

Ука­жи­те про­из­ве­де­ние кор­ней урав­не­ния:  x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 x плюс 1 пра­вая круг­лая скоб­ка = 5 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 5 49 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 49 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 7 конец дроби
3)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 7 конец дроби
4)  дробь: чис­ли­тель: 7, зна­ме­на­тель: 25 конец дроби