Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 4306
1.  
i

Mожно ли уча­щих­ся 10 «А» клас­са в ко­ли­че­стве 28 че­ло­век раз­де­лить на груп­пы по a че­ло­век, где равно: 3; 5; 7; 8; 9? Вы­бе­ри­те пра­виль­ный ответ.

1) можно, при a=3
2) можно, при a=5
3) можно, при a=8
4) можно, при a=7
2.  
i

Вы­чис­ли­те: i в кубе плюс i в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус i в сте­пе­ни левая круг­лая скоб­ка 8 пра­вая круг­лая скоб­ка .

1)  минус 4i.
2) 1 минус 2i.
3)  минус i
4)  минус 1 плюс 2i.
3.  
i

Чет­верть числа 5 умно­жи­ли на число, об­рат­ное зна­че­нию от­но­ше­ния чисел 0,(7) к 0,(14). Какое число по­лу­чи­лось в ре­зуль­та­те всех этих дей­ствий?

1)  целая часть: 6, дроб­ная часть: чис­ли­тель: 7, зна­ме­на­тель: 8
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 22 конец дроби
3)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 22 конец дроби
4) 25
4.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус в квад­ра­те альфа минус ко­си­нус альфа плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та тан­генс альфа при  альфа = дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби .

1)  целая часть: 3, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
2)  целая часть: 3, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 4
3)  целая часть: 3, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3
4)  целая часть: 4, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
5.  
i

При­ве­ди­те од­но­член 7a в кубе c в кубе a в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка c в сте­пе­ни 7 к стан­дарт­но­му виду.

1) 7ac в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка
2) 7a в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка c в сте­пе­ни левая круг­лая скоб­ка минус 10 пра­вая круг­лая скоб­ка
3) 7a в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка c в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка
4) 7ac в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка
6.  
i

Ре­ши­те урав­не­ние  дробь: чис­ли­тель: 2x в квад­ра­те , зна­ме­на­тель: x минус 2 конец дроби = дробь: чис­ли­тель: 6 минус 7x, зна­ме­на­тель: 2 минус x конец дроби .

1) 5,5
2) 3,5
3) 7,5
4) 1,5
7.  
i

Най­ди­те число А, если A = x умно­жить на y, где (x; y) яв­ля­ет­ся ре­ше­ни­ем си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x в квад­ра­те y = 9,xy в квад­ра­те = 3. конец си­сте­мы .

1) −3
2) −1
3) 0
4) 3
8.  
i

Вы­чис­ли­те пре­дел \undersetx\to 2\mathop\lim дробь: чис­ли­тель: x в кубе минус 8, зна­ме­на­тель: 2x минус 4 конец дроби .

1) 2
2) 0
3) 6
4) 3
9.  
i

Синус боль­ше­го угла тре­уголь­ни­ка со сто­ро­на­ми 10 см, 17 см, 21 см равен

1)  дробь: чис­ли­тель: 84, зна­ме­на­тель: 85 конец дроби
2)  дробь: чис­ли­тель: 27, зна­ме­на­тель: 57 конец дроби
3)  дробь: чис­ли­тель: 17, зна­ме­на­тель: 71 конец дроби
4)  дробь: чис­ли­тель: 83, зна­ме­на­тель: 170 конец дроби
10.  
i

Най­ди­те объем пра­виль­ной усе­чен­ной че­ты­рех­уголь­ной пи­ра­ми­ды, сто­ро­ны ос­но­ва­ния ко­то­рой равны 9 см и 25 см, а вы­со­та 18 см.

1) 4308 см3
2) 5586 см3
3) 5896 см3
4) 3888 см3
11.  
i

Из пред­ло­жен­ных ниже ва­ри­ан­тов най­ди­те серию, со­дер­жа­щую все ре­ше­ния урав­не­ния  синус 3 x плюс ко­си­нус 3 x=0.

1)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс 3 Пи n,  n при­над­ле­жит Z
2)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс дробь: чис­ли­тель: Пи n, зна­ме­на­тель: 3 конец дроби ,  n при­над­ле­жит Z
3)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс 2 Пи n,  n при­над­ле­жит Z
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс дробь: чис­ли­тель: Пи n, зна­ме­на­тель: 3 конец дроби ,  n при­над­ле­жит Z
12.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний x левая круг­лая скоб­ка 2x минус 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка боль­ше или равно 0,x в квад­ра­те минус 3x мень­ше 0. конец си­сте­мы .

1) (2; 3)
2) [2; 3)
3) [0; 3]
4) (2; 3]
13.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те ,y= минус x минус 2, минус 3 мень­ше или равно x мень­ше или равно 2.

1)  дробь: чис­ли­тель: 115, зна­ме­на­тель: 6 конец дроби
2)  дробь: чис­ли­тель: 117, зна­ме­на­тель: 6 конец дроби
3)  дробь: чис­ли­тель: 111, зна­ме­на­тель: 6 конец дроби
4)  дробь: чис­ли­тель: 115, зна­ме­на­тель: 8 конец дроби
14.  
i

Сколь­ко раз­лич­ных сиг­на­лов (крас­но­го, жёлтого и зелёного цве­тов) могут од­но­вре­мен­но дать 6 све­то­фо­ров?

1) 4096
2) 1024
3) 8192
4) 256
15.  
i

Даны ка­са­ю­щи­е­ся окруж­но­сти с цен­тра­ми O1 и O2, DF — общая ка­са­тель­ная; DC=16, FO_1=6, DA=2. Ра­ди­ус вто­рой окруж­но­сти равен

1) 12
2) 9
3) 10
4) 15
16.  
i

Опре­де­ли­те вза­им­ное рас­по­ло­же­ние пря­мых d1 и d2, если они за­да­ны урав­не­ни­я­ми

 дробь: чис­ли­тель: x минус 2, зна­ме­на­тель: 2 конец дроби = дробь: чис­ли­тель: y плюс 1, зна­ме­на­тель: минус 3 конец дроби = дробь: чис­ли­тель: z , зна­ме­на­тель: минус 1 конец дроби и  дробь: чис­ли­тель: x плюс 1, зна­ме­на­тель: 4 конец дроби = дробь: чис­ли­тель: y , зна­ме­на­тель: минус 6 конец дроби = дробь: чис­ли­тель: z минус 1, зна­ме­на­тель: минус 2 конец дроби

со­от­вет­ствен­но.

1) не лежат в одной плос­ко­сти
2) па­рал­лель­ны
3) пе­ре­се­ка­ют­ся
4) пер­пен­ди­ку­ляр­ны

Pешите урав­не­ние  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 2 конец ар­гу­мен­та конец дроби пра­вая круг­лая скоб­ка 5 плюс 2=0, в от­ве­те за­пи­ши­те про­из­ве­де­ние кор­ней или ко­рень, если он един­ствен­ный.

1) 4
2) 2
3) 1
4) 3
18.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 6 плюс 2x боль­ше или равно x минус 2,4x минус 5 мень­ше или равно 7. конец си­сте­мы .

1)  левая круг­лая скоб­ка минус 8; 3 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус 8; минус 3 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка минус 8; 3 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус 8; 3 пра­вая квад­рат­ная скоб­ка
19.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 3x в кубе плюс 2x в квад­ра­те , зна­ме­на­тель: x в квад­ра­те конец дроби , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 1;3 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби x в квад­ра­те плюс 2x
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби x в квад­ра­те минус 2x плюс дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби x в квад­ра­те плюс 2x плюс дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби x в кубе минус 2x плюс дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби
20.  
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 15 Пи . Най­ди­те объем V ци­лин­дра, если из­вест­но, что ра­ди­ус его ос­но­ва­ния боль­ше вы­со­ты на 3,5. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 6 умно­жить на V, зна­ме­на­тель: Пи конец дроби .

1) 225
2) 196
3) 250
4) 200
21.  
i

Учи­тель дал до­маш­нее прак­ти­че­ское за­да­ние по гео­мет­рии. Сде­лать макет приз­мы и со­ста­вить к ним за­да­ния. Самат под­го­то­вил макет пра­виль­ной ше­сти­уголь­ной приз­мы со сто­ро­ной ос­но­ва­ния рав­ной 1, а бо­ко­вое ребро 2 и со­ста­вил сле­ду­ю­щие за­да­ния.

Най­ди­те сумму век­то­ров \overrightarrowAA_1 и \overrightarrowE_1D_1.

1)  \overrightarrowD_1C
2)  \overrightarrowAB_1
3)  \overrightarrowBC
4)  \overrightarrowAF_1
22.  
i

Учи­тель дал до­маш­нее прак­ти­че­ское за­да­ние по гео­мет­рии. Сде­лать макет приз­мы и со­ста­вить к ним за­да­ния. Самат под­го­то­вил макет пра­виль­ной ше­сти­уголь­ной приз­мы со сто­ро­ной ос­но­ва­ния рав­ной 1, а бо­ко­вое ребро 2 и со­ста­вил сле­ду­ю­щие за­да­ния.

Опре­де­ли­те длину по­лу­чен­но­го век­то­ра.

1)  ко­рень из 5
2)  ко­рень из 2
3)  ко­рень из 3
4)  ко­рень из 6
23.  
i

Учи­тель дал до­маш­нее прак­ти­че­ское за­да­ние по гео­мет­рии. Сде­лать макет приз­мы и со­ста­вить к ним за­да­ния. Самат под­го­то­вил макет пра­виль­ной ше­сти­уголь­ной приз­мы со сто­ро­ной ос­но­ва­ния рав­ной 1, а бо­ко­вое ребро 2 и со­ста­вил сле­ду­ю­щие за­да­ния.

Опре­де­ли­те век­тор, рав­ный сумме век­то­ров  \overrightarrowAB_1 плюс \overrightarrowB_1E_1 плюс \overrightarrowF_1F.

1)  \overrightarrowAB_1
2)  \overrightarrowAF_1
3)  \overrightarrowBB_1
4)  \overrightarrowAE
24.  
i

Учи­тель дал до­маш­нее прак­ти­че­ское за­да­ние по гео­мет­рии. Сде­лать макет приз­мы и со­ста­вить к ним за­да­ния. Самат под­го­то­вил макет пра­виль­ной ше­сти­уголь­ной приз­мы со сто­ро­ной ос­но­ва­ния рав­ной 1, а бо­ко­вое ребро 2 и со­ста­вил сле­ду­ю­щие за­да­ния.

Опре­де­ли­те угол между пря­мой AD1 и плос­ко­стью ABCDEF.

1) 30°
2) 90°
3) 60°
4) 45°
25.  
i

Учи­тель дал до­маш­нее прак­ти­че­ское за­да­ние по гео­мет­рии. Сде­лать макет приз­мы и со­ста­вить к ним за­да­ния. Самат под­го­то­вил макет пра­виль­ной ше­сти­уголь­ной приз­мы со сто­ро­ной ос­но­ва­ния рав­ной 1, а бо­ко­вое ребро 2 и со­ста­вил сле­ду­ю­щие за­да­ния.

Опре­де­ли­те угол между век­то­ра­ми  \overrightarrowEB и  \overrightarrowEA.

1) 60°
2) 180°
3) 90°
4) 30°
26.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та , зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 125 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та конец дроби .

1) 2 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
2) 1,5
3) −1,5
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 6 конец дроби
5)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6) 1,2
27.  
i

Ре­ши­те три­го­но­мет­ри­че­ское не­ра­вен­ство \ левая квад­рат­ная скоб­ка \operatorname тан­генс в квад­ра­те x плюс 3\operatorname тан­генс x минус 4 боль­ше или равно 0\ пра­вая квад­рат­ная скоб­ка .

1) \bigcup\limits_k при­над­ле­жит Z левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка \cup левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k; минус \operatorname арк­тан­генс 4 плюс 2 Пи k пра­вая квад­рат­ная скоб­ка
2) \bigcup\limits_k при­над­ле­жит Z левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k; минус \operatorname арк­тан­генс 4 плюс Пи k пра­вая квад­рат­ная скоб­ка
3) \bigcup\limits_k при­над­ле­жит Z левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k; минус \operatorname арк­тан­генс 4 плюс Пи k пра­вая квад­рат­ная скоб­ка
4) \bigcup\limits_k при­над­ле­жит Z левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k пра­вая круг­лая скоб­ка \cup левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k; минус \operatorname арк­тан­генс 4 плюс Пи k пра­вая квад­рат­ная скоб­ка
5) \bigcup\limits_k при­над­ле­жит Z левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k; минус \operatorname арк­тан­генс 4 плюс Пи k пра­вая круг­лая скоб­ка
6) \bigcup\limits_k при­над­ле­жит Z левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k пра­вая круг­лая скоб­ка \cup левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k; минус \operatorname арк­тан­генс 4 плюс Пи k пра­вая круг­лая скоб­ка
28.  
i

Упро­сти­те вы­ра­же­ние

 4 левая круг­лая скоб­ка 3 a минус 2,5 b пра­вая круг­лая скоб­ка минус 11 левая круг­лая скоб­ка a минус 2 b пра­вая круг­лая скоб­ка минус 65 a b минус 13 левая круг­лая скоб­ка b минус 5 a b пра­вая круг­лая скоб­ка

и най­ди­те его зна­че­ние при a= минус 1 и b=2. Вы­бе­ри­те про­ме­жут­ки, в ко­то­рые вхо­дит зна­че­ние вы­ра­же­ния.

1) (0; 0,0615]
2) [−150; 0)
3)  левая квад­рат­ная скоб­ка 0 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4) (−8; 0)
5) [−400; −10]
6) (−10; 0]
29.  
i

Ука­жи­те функ­цию, воз­рас­та­ю­щую на всей об­ла­сти опре­де­ле­ния.

1) y= левая круг­лая скоб­ка дробь: чис­ли­тель: 11, зна­ме­на­тель: 13 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка
2) y=0,2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка
3) y=4,3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка
4) y=5 в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка
5) y= левая круг­лая скоб­ка дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка
6) y=3,4 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка
30.  
i

Най­ди­те ко­ор­ди­на­ты век­то­ра \veca, если \veca=\vecp плюс \veci,\vecp= левая круг­лая скоб­ка минус 1;3 пра­вая круг­лая скоб­ка ,\veci= левая круг­лая скоб­ка 2;2 пра­вая круг­лая скоб­ка .

1) (5; 3)
2) (2; 4)
3) (2; 5)
4) (1; 1)
5) (1; 5)
6) (4; 3)
31.  
i

Вы­чис­ли­те  дробь: чис­ли­тель: левая круг­лая скоб­ка 1 минус i пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 8 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка 1 плюс i пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка конец дроби плюс дробь: чис­ли­тель: левая круг­лая скоб­ка 1 плюс i пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка 1 минус i пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка конец дроби .

1)  минус 4 минус дробь: чис­ли­тель: i, зна­ме­на­тель: 2 конец дроби .
2)  минус 1 минус дробь: чис­ли­тель: i, зна­ме­на­тель: 2 конец дроби .
3)  минус 4 плюс дробь: чис­ли­тель: i, зна­ме­на­тель: 2 конец дроби
4)  минус 4 плюс i
5) 1 плюс i.
6)  минус 4 плюс дробь: чис­ли­тель: i, зна­ме­на­тель: 4 конец дроби
32.  
i

Из ниже пред­ло­жен­ных чисел ука­жи­те целые числа удо­вле­тво­ря­ю­щие не­ра­вен­ству 2|x| минус 5 боль­ше или равно 0.

1) 1
2) 3
3) −2
4) −3
5) 2
6) −1,5
33.  
i

Tре­уголь­ни­ки ABC и MNP по­доб­ны. Най­ди­те сто­ро­ны BC и MN.

1) 15 см
2) 12,5 см
3) 8,5 см
4) 12 см
5) 7 см
6) 9 см
34.  
i

Най­ди­те пер­вые че­ты­ре члена по­сле­до­ва­тель­но­сти {an}, если a1 = 7 и a_n плюс 1=5 плюс 2a_n.

1) 7; 29; 50; 71
2) 7; 21; 37; 51
3) 7; 28; 49; 82
4) 7; 19; 43; 91
35.  
i

В пра­виль­ной тре­уголь­ной приз­ме все ребра равны 1. Точка K — се­ре­ди­на ребра AC. Най­ди­те ко­ор­ди­на­ты век­то­ров \overrightarrowAK и  \overrightarrowFB.

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 0; 1 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 1 ; дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби ; минус 1 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби ; 0 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби ; 0 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус 1 ; 0 ; 1 пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби ; 1 пра­вая круг­лая скоб­ка