Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 22941
1.  
i

Cокра­ти­те дробь:  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 70 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 30 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 35 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та конец дроби .

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та
4)  ко­рень из 2
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 9 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 8 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка при x=8.

1) 4
2) 0
3) 2
4) 1
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 5 синус дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 12 конец дроби умно­жить на ко­си­нус дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 12 конец дроби .

1) 1
2) −0,5
3) 0,5
4) −1,25
4.  
i

Пре­об­ра­зуй­те вы­ра­же­ние 4x в квад­ра­те минус 4x плюс 2, вы­де­лив пол­ный квад­рат.

1)  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те минус 1
2)  левая круг­лая скоб­ка 2x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те минус 1
3)  левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те плюс 1
4)  левая круг­лая скоб­ка 2x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те плюс 1
5.  
i

Урав­не­ние |x в квад­ра­те плюс x минус 3| = x имеет ир­ра­ци­о­наль­ный ко­рень

1)  ко­рень из 2
2)  ко­рень из 5
3)  минус ко­рень из 5
4)  ко­рень из 3
6.  
i

Най­ди­те x плюс y, если пара чисел (x, y) яв­ля­ет­ся ре­ше­ни­ем си­сте­мы  си­сте­ма вы­ра­же­ний 11 x плюс 2 y=7, x минус 3 y=7. конец си­сте­мы .

1) 1
2) −3
3) −2
4) −1
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка ко­си­нус 2x ко­си­нус x плюс синус 2x синус x пра­вая круг­лая скоб­ка dx.

1)  синус x
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби синус x
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби синус x
4)  синус 3x
8.  
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 28 Пи , и его объем равен 28 Пи . Най­ди­те вы­со­ту ци­лин­дра.

1) 3
2) 3,5
3) 7
4) 14
9.  
i

Pешите си­сте­му не­ра­венств

 си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в квад­ра­те минус 2 x плюс 1 конец дроби боль­ше или равно 0, дробь: чис­ли­тель: x в квад­ра­те минус 2 x минус 3, зна­ме­на­тель: левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те конец дроби мень­ше или равно 0. конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка 0 ; 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1 ; 2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 4 ; 6 пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка 1 ; бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка минус 1 ; 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1 ; 2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 2 ; 3 пра­вая квад­рат­ная скоб­ка
4) (3; 4)
10.  
i

Ре­ши­те урав­не­ние:  синус 3x ко­си­нус 3x = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 3 конец дроби , k при­над­ле­жит Z
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 3 конец дроби , k при­над­ле­жит Z
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 6 конец дроби , k при­над­ле­жит Z
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 3 конец дроби , k при­над­ле­жит Z
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =4 левая круг­лая скоб­ка 3x плюс 2 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та , про­хо­дя­щую через точку  левая круг­лая скоб­ка 1;5 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 24, зна­ме­на­тель: 5 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 16, зна­ме­на­тель: 3 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 4 минус дробь: чис­ли­тель: 24, зна­ме­на­тель: 5 конец дроби умно­жить на 8 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 16, зна­ме­на­тель: 3 конец дроби умно­жить на 8 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
2)  дробь: чис­ли­тель: 24, зна­ме­на­тель: 5 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 16, зна­ме­на­тель: 3 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 77, зна­ме­на­тель: 15 конец дроби
3) x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 16, зна­ме­на­тель: 3 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 4 минус дробь: чис­ли­тель: 24, зна­ме­на­тель: 5 конец дроби умно­жить на 8 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 16, зна­ме­на­тель: 3 конец дроби умно­жить на 8 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка .
4)  дробь: чис­ли­тель: 24, зна­ме­на­тель: 5 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 16, зна­ме­на­тель: 3 конец дроби x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 4 минус дробь: чис­ли­тель: 24, зна­ме­на­тель: 5 конец дроби умно­жить на 8 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 16, зна­ме­на­тель: 3 конец дроби умно­жить на 8 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка .
12.  
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 7, зна­ме­на­тель: 2x минус 3 конец дроби мень­ше 0.

1)  левая круг­лая скоб­ка минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая круг­лая скоб­ка
13.  
i

Сто­ро­ны тре­уголь­ни­ка равны 4 см, 6 см и 8 см. Най­ди­те сто­ро­ны по­доб­но­го ему тре­уголь­ни­ка, если ко­эф­фи­ци­ент по­до­бия равен 2. В от­ве­те ука­жи­те сумму длин сто­рон.

1) 32 см
2) 36 см
3) 30 см
4) 40 см
14.  
i

Вы­чис­ли­те ин­те­грал:  при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка синус 3 x ко­си­нус 2 x минус ко­си­нус 3 x синус 2 x пра­вая круг­лая скоб­ка d x.

1) 1
2) 0,5
3) −0,5
4) 0
15.  
i

Най­ди­те объем пра­виль­ной че­ты­рех­уголь­ной усе­чен­ной пи­ра­ми­ды, если сто­ро­ны ее ос­но­ва­ния 1 см и 9 см, а вы­со­та 6 см.

1) 162 см3
2) 182 см3
3) 152 см3
4) 180 см3
16.  
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 2x плюс 3 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 3 конец ар­гу­мен­та = 0.

1) −1
2) 0
3) 3
4) −2
17.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка мень­ше дробь: чис­ли­тель: 3, зна­ме­на­тель: 9 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби пра­вая круг­лая скоб­ка конец дроби , 6 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка боль­ше 2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка . конец си­сте­мы .

1)  левая круг­лая скоб­ка минус 1; 0 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1; 2 пра­вая круг­лая скоб­ка
2) [−3; 3)
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 3 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной па­ра­бо­ла­ми: y= левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те ,y= минус левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка в квад­ра­те , минус 2 мень­ше или равно x мень­ше или равно 2.

1) 128
2)  дробь: чис­ли­тель: 256, зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 128, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 64, зна­ме­на­тель: 3 конец дроби
19.  
i

Вы­со­та BH ромба ABCD делит его сто­ро­ну AD на от­рез­ки AH = 44 и HD=11. Най­ди­те пло­щадь ромба.

1) 1750
2) 1815
3) 1800
4) 1785
20.  
i

Сумма бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии равна 32, а сумма ее пер­вых пяти чле­нов равна 31. Най­ди­те пер­вый член про­грес­сии.

1) 32
2) 16
3) 12
4) 24
21.  
i

Сто­ро­ны пра­виль­но­го тре­уголь­ни­ка ABC равны 4. Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров \overrightarrowAB и \overrightarrowAC.

1) 16
2) 8
3) 4
4) 12
22.  
i

Упро­сти­те:

 дробь: чис­ли­тель: левая круг­лая скоб­ка b в сте­пе­ни левая круг­лая скоб­ка 1,2 пра­вая круг­лая скоб­ка плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в кубе плюс левая круг­лая скоб­ка b в сте­пе­ни левая круг­лая скоб­ка 1,2 пра­вая круг­лая скоб­ка минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в кубе , зна­ме­на­тель: b в сте­пе­ни левая круг­лая скоб­ка 2,4 пра­вая круг­лая скоб­ка плюс 6 конец дроби .

1) b в сте­пе­ни левая круг­лая скоб­ка 2,4 пра­вая круг­лая скоб­ка
2) b в сте­пе­ни левая круг­лая скоб­ка 1,2 пра­вая круг­лая скоб­ка
3) 2b в сте­пе­ни левая круг­лая скоб­ка 2,4 пра­вая круг­лая скоб­ка
4) 2b в сте­пе­ни левая круг­лая скоб­ка 1,2 пра­вая круг­лая скоб­ка
23.  
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка x в квад­ра­те плюс 4\log _4 левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка плюс 1=0.

1) 1
2)  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
24.  
i

Ре­ши­те не­ра­вен­ство 2 в сте­пе­ни x плюс 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка боль­ше или равно 144.

1)  левая квад­рат­ная скоб­ка 34,5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка 4; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;4 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;4,5 пра­вая квад­рат­ная скоб­ка
25.  
i

На­пи­ши­те урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в квад­ра­те минус x минус 12 в точке x0  =  5.

1) y = 6x минус 37
2) y = 9x минус 37
3) y = 9x минус 34
4) y = 9x минус 38
26.  
i

Вы­пуск­ной бал

Це­ре­мо­нию вру­че­ния ат­те­ста­тов вы­пуск­ни­кам ре­ши­ли про­ве­сти в го­род­ском парке. По­стро­и­ли две арки в форме по­лу­кру­га с ра­ди­у­са­ми 6 м и 8 м. Сцену, где будет про­хо­дить кон­церт­ная про­грам­ма сде­ла­ли в виде боль­шо­го круга ра­ди­у­сом 5 м. На сцену по­сте­ли­ли ковер в виде рав­но­сто­рон­не­го тре­уголь­ни­ка, сто­ро­ны ко­то­ро­го от­се­ка­ют сег­мен­ты рав­ных пло­ща­дей. По­ми­мо этого ре­ши­ли со­ору­дить стенд, где будут рас­по­ло­же­ны фо­то­гра­фии вы­пуск­ни­ков в форме тра­пе­ции с ос­но­ва­ни­я­ми рав­ны­ми 10 см и 16 см и вы­со­той рав­ной 15 см.

Kакой про­цент со­став­ля­ет длина малой арки от длины боль­шой арки?

1) 40%
2) 60%
3) 50%
4) 75%
27.  
i

Для тру­до­устрой­ства на пред­при­я­тие при­сла­ли ре­зю­ме 3 эко­но­ми­ста, 5 ме­не­дже­ров и 4 про­грам­ми­ста.

Пред­при­я­тию тре­бу­ет­ся 3 про­грам­ми­ста. Ука­жи­те ко­ли­че­ство спо­со­бов, ко­то­ры­ми их можно вы­брать.

1) 2
2) 6
3) 8
4) 4
28.  
i

Чай­ный двор

По­су­да яв­ля­ет­ся то­ва­ром на­род­но­го по­треб­ле­ния и оце­ни­ва­ет­ся не толь­ко как пред­мет быта, но и как эле­мент де­ко­ра. Спрос на нее все­гда оста­ет­ся на до­ста­точ­но вы­со­ком уров­не по ряду при­чин. На се­го­дняш­ний день рынок пред­став­лен мно­го­об­ра­зи­ем то­ва­ров раз­лич­ных видов по­су­ды и це­но­вых ка­те­го­рий, что поз­во­ля­ет удо­вле­тво­рить любой спрос.

В ма­га­зи­не «Чай­ный двор» вы­став­ле­ны на про­да­жу раз­лич­ный ас­сор­ти­мент чай­ной по­су­ды на­чи­ная от ложки для чая, за­кан­чи­вая по­су­дой для чай­ных це­ре­мо­ний из раз­лич­ных ме­тал­лов и ма­те­ри­а­лов. По акции про­да­ва­лись 5 чашек, 8 блюд­цев, 7 ложек. Ма­ди­на ку­пи­ла домой ком­плект по­су­ды по акции.

Сколь­ки­ми спо­со­ба­ми Ма­ди­на может вы­брать в ма­га­зи­не из дан­ных то­ва­ров ком­плект из двух раз­ных пред­ме­тов?

1) 131
2) 125
3) 132
4) 119
29.  
i

Торт в форме ци­лин­дра. Вы­со­та торта 20 см. Диа­метр 30 см. Сред­няя плот­ность торта 0,4 г/см3.

Торт раз­делён ше­стью диа­мет­ра­ми на ку­соч­ки рав­ной ве­ли­чи­ны. Най­ди­те массу каж­до­го ку­соч­ка, если сред­няя плот­ность торта 0,4 г/см3.

1) 450 г
2) 300 г
3) 250 г
4) 350 г
30.  
i

Для тру­до­устрой­ства на пред­при­я­тие при­сла­ли ре­зю­ме 3 эко­но­ми­ста, 5 ме­не­дже­ров и 4 про­грам­ми­ста.

Bычис­ли­те ве­ро­ят­ность, что из всех, по­дав­ших ре­зю­ме, тру­до­устро­ят­ся 2 эко­но­ми­ста, 3 ме­не­дже­ра и 3 про­грам­ми­ста (ответ округ­ли­те до сотых).

1) 0,12
2) 0,24
3) 0,15
4) 0,21
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = 4 ко­си­нус x минус 4. Уста­но­ви­те со­от­вет­ствия:

A) Нули функ­ции

Б) Об­ласть до­пу­сти­мых зна­че­ний функ­ции

1) [−8; 0]

2)  левая фи­гур­ная скоб­ка Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка

3)  левая фи­гур­ная скоб­ка 2 Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка

4) [−4; 4]

32.  
i

Ра­ди­ус опи­сан­ной около пра­виль­но­го тре­уголь­ни­ка окруж­но­сти равен 2. Уста­но­ви­те со­от­вет­ствие между дли­ной сто­ро­ны тре­уголь­ни­ка, его пло­ща­дью и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина сто­ро­ны тре­уголь­ни­ка

Б) Пло­щадь тре­уголь­ни­ка

1) 4 ко­рень из 3

2) 3 ко­рень из 3

3) 6

4) 2 ко­рень из 3

33.  
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  дробь: чис­ли­тель: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в кубе левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в квад­ра­те плюс 2x плюс 1 конец дроби . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) (15; 20)

2) (7; 11)

3) (20; 25)

4) (2; 5)

34.  
i

Даны урав­не­ния 2 в сте­пе­ни левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка = 64 и  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та в квад­ра­те минус 2x минус 3=0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 2, 0, 5

2) 8, −1, 3

3) −2, 3, 2

4) 8, 3, 6

35.  
i

Вы­пи­са­но не­сколь­ко по­сле­до­ва­тель­ных чле­нов гео­мет­ри­че­ской про­грес­сии: …; 1,75; x ; 28; −112; … Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) q

Б) x

1) −7

2) −4

3) −3

4) −10

2
36.  
i

Упро­сти­те: | ко­рень из 7 плюс ко­рень из 5 минус 4| плюс | ко­рень из 7 плюс ко­рень из 5 минус 5|.

1) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 1
2) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
3) 1
4) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та плюс 1
5) 2
6) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та минус 1
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус 12 гра­ду­сов ко­си­нус 18 гра­ду­сов плюс ко­си­нус 12 гра­ду­сов синус 18 гра­ду­сов .

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2) 0
3) 1
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
5)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
6) 2
38.  
i

Знаем, что (an) — ариф­ме­ти­че­ская про­грес­сия, седь­мой член, ко­то­рой равен 5, тогда сумма три­на­дца­ти пер­вых чле­нов этой про­грес­сии равна

1) −65
2) 65
3)  минус 5 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та
4) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та
5) 13 ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та
6) 5 ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка 13 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
39.  
i

Ре­ши­те си­сте­му, со­дер­жа­щую ир­ра­ци­о­наль­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка 2x плюс y=2, новая стро­ка 2 левая круг­лая скоб­ка y минус 1 пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 10x конец ар­гу­мен­та в квад­ра­те минус xy минус 2y в квад­ра­те . конец си­сте­мы .

В от­ве­те за­пи­ши­те зна­че­ние вы­ра­же­ния 2x плюс y.
1) 2
2) 3
3)  ко­рень из 4
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби
5) −1
6) 0
40.  
i

Сто­ро­ны ос­но­ва­ния пря­мо­го па­рал­ле­ле­пи­пе­да равны 6 дм и 8 дм. Из­вест­но, что мень­шая диа­го­наль па­рал­ле­ле­пи­пе­да равна 9 дм, а одна из диа­го­на­лей ос­но­ва­ния равна 12 дм. Най­ди­те бо­ко­вое ребро и боль­шую диа­го­наль пря­мо­го па­рал­ле­ле­пи­пе­да.

1) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та дм
2) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та дм
3) 5 дм
4) 13 дм
5) 6 дм
6) 8 дм