Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 20976
1.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка 6 в кубе плюс дробь: чис­ли­тель: 2 в сте­пе­ни 8 , зна­ме­на­тель: 3 в квад­ра­те конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни 0 минус левая круг­лая скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в квад­ра­те минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в квад­ра­те .

1)  целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 4
2)  минус целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 18
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 15, зна­ме­на­тель: 16 конец дроби
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 2 левая круг­лая скоб­ка x в квад­ра­те минус y пра­вая круг­лая скоб­ка , зна­ме­на­тель: x минус 6 конец дроби минус 2x плюс дробь: чис­ли­тель: 3x минус y, зна­ме­на­тель: 6 минус x конец дроби при x  =  −1, y  =  5.

1) 7
2) 12
3) 0
4) 2
3.  
i

Вы­чис­ли­те  синус дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 14 конец дроби ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 7 конец дроби минус синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 7 конец дроби ко­си­нус дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 14 конец дроби .

1) 0
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4) 1
4.  
i

Опре­де­ли­те сте­пень мно­го­чле­на: 2x в квад­ра­те y в сте­пе­ни 7 минус 4x в сте­пе­ни 7 плюс 2xy минус 18.

1) 9
2) 7
3) 2
4) 8
5.  
i

Ре­ши­те урав­не­ние:  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби y минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1) −1
2) 2
3) 1
4) 0
6.  
i

Ре­ши­те си­сте­му урав­не­ний:

 си­сте­ма вы­ра­же­ний 2x минус 3y=14,x плюс 3y= минус 11. конец си­сте­мы .

1)  левая круг­лая скоб­ка 2;3 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 1; минус 4 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус 1; минус 3 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 2;1 пра­вая круг­лая скоб­ка
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс e в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка плюс e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 9e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс e в сте­пе­ни левая круг­лая скоб­ка 4x минус 5 пра­вая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка плюс C
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 9e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка минус e в сте­пе­ни левая круг­лая скоб­ка 4x минус 5 пра­вая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка плюс C
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 9e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка плюс C
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби e в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 9e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс e в сте­пе­ни левая круг­лая скоб­ка 4x минус 5 пра­вая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка плюс C
8.  
i

Ци­линдр с ра­ди­у­сом ос­но­ва­ния R = 2 ко­рень из 3 см впи­сан в пра­виль­ную тре­уголь­ную приз­му. Най­ди­те пло­щадь одной бо­ко­вой грани приз­мы, если вы­со­та ци­лин­дра 7 см.

1) 85 см2
2) 80 см2
3) 84 см2
4) 90 см2
9.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний синус 2x боль­ше 0, ко­си­нус 2x мень­ше или равно дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби . конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
2)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи n; Пи плюс 2 Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи n пра­вая квад­рат­ная скоб­ка , n при­над­ле­жит Z
10.  
i

Ре­ши­те урав­не­ние:  ко­си­нус левая круг­лая скоб­ка 4x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка =1.

1)
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс Пи k
3)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 2 конец дроби
11.  
i

Най­ди­те зна­че­ние про­из­вод­ной функ­ции в точке x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка минус 6x плюс 7x в квад­ра­те в точке x  =  1.

1)  дробь: чис­ли­тель: 44, зна­ме­на­тель: 5 конец дроби
2)  дробь: чис­ли­тель: 36, зна­ме­на­тель: 5 конец дроби
3) 8
4)  дробь: чис­ли­тель: 48, зна­ме­на­тель: 5 конец дроби
12.  
i

Зна­че­ние пе­ре­мен­ной х, при ко­то­ром верно не­ра­вен­ство:  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби мень­ше x мень­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби 10
3)  дробь: чис­ли­тель: 9, зна­ме­на­тель: конец дроби 10
4)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби
13.  
i

Тан­генс мень­ше­го угла тре­уголь­ни­ка со сто­ро­на­ми 10 см, 17 см, 21 см, равен?

1) 1,4
2)  дробь: чис­ли­тель: 8, зна­ме­на­тель: 15 конец дроби
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 8 конец дроби
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от минус 4 до 1, левая круг­лая скоб­ка 7x в квад­ра­те минус 3x плюс 11 пра­вая круг­лая скоб­ка dx.

1)  минус дробь: чис­ли­тель: 1375, зна­ме­на­тель: 6 конец дроби
2)  дробь: чис­ли­тель: 1375, зна­ме­на­тель: 6 конец дроби
3) 220
4)  дробь: чис­ли­тель: 1390, зна­ме­на­тель: 6 конец дроби
15.  
i

Дву­гран­ный угол равен 60°. Из точки N на его ребре в гра­нях про­ве­де­ны пер­пен­ди­ку­ляр­ные ребру от­рез­ки NB = 8 см, AN = 2 см. Най­ди­те длину AB.

1) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та см
2) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та см
3) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та см
4) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та см
16.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния 6 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка плюс 108=2 в сте­пе­ни левая круг­лая скоб­ка 2 минус x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 12 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка .

1) −6
2) −2
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4) 6
17.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 5 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка 1 минус x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка мень­ше 3, ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 22 плюс 3 в сте­пе­ни x пра­вая круг­лая скоб­ка боль­ше минус 2. конец си­сте­мы .

1)  левая круг­лая скоб­ка минус 2; минус 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0; 1 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус 2; 1 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус 15; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус 2; 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной па­ра­бо­ла­ми: y=x в квад­ра­те плюс 1,y=x в квад­ра­те минус 1, минус 10 мень­ше или равно x мень­ше или равно 10.

1) 10
2) 40
3) 20
4) 80
19.  
i

Пря­мо­уголь­ник ABCD впи­сан в окруж­ность. Дуга BC равна 40°. Мень­ший угол между диа­го­на­ля­ми пря­мо­уголь­ни­ка равен?

1) 55°
2) 20°
3) 35°
4) 40°
20.  
i

Най­ди­те пер­вый по­ло­жи­тель­ный член ариф­ме­ти­че­ской про­грес­сии: −20,3; −18,7; ...

1) 0,4
2) 1
3) 0,2
4) 0,5
21.  
i

Сто­ро­ны пра­виль­но­го тре­уголь­ни­ка ABC равны 6. Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров \overrightarrowAB и \overrightarrowAC.

1) 18 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2) 18
3) 9
4) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
22.  
i

Ука­жи­те урав­не­ние, рав­но­силь­ное урав­не­нию: 2x плюс 3y= минус 7x плюс 8y плюс 4.

1) 27 x=12 плюс 15 y
2)  минус 5 x=4 плюс 5 y
3) 18 x=4 минус 5 y
4) 27 x=15 y плюс 6
23.  
i

Ре­ши­те урав­не­ние  де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка = де­ся­тич­ный ло­га­рифм дробь: чис­ли­тель: x плюс 2, зна­ме­на­тель: x минус 3 конец дроби .

1) 4
2) 2
3) −2
4) 1
24.  
i

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство  тан­генс x боль­ше или равно минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

1)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
2)  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k пра­вая квад­рат­ная скоб­ка , k при­над­ле­жит Z
3)  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
4)  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби ,x_0=4.

1) y = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2) y = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 16 конец дроби x минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3) y = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 16 конец дроби x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4) y = дробь: чис­ли­тель: 1, зна­ме­на­тель: 16 конец дроби x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
26.  
i

Для тру­до­устрой­ства на пред­при­я­тие при­сла­ли ре­зю­ме 3 эко­но­ми­ста, 5 ме­не­дже­ров и 4 про­грам­ми­ста.

Для новых 3 про­грам­ми­стов име­ет­ся 4 ра­бо­чих места, обо­ру­до­ван­ных пер­со­наль­ны­ми ком­пью­те­ра­ми. Ука­жи­те ко­ли­че­ство спо­со­бов, ко­то­ры­ми но­вич­ки могут вы­брать себе ра­бо­чее место.

1) 26
2) 21
3) 18
4) 24
27.  
i

Aлия и Арман ре­ши­ли обла­го­ро­дить свою дачу. Длина всего участ­ка 27 м, а его пло­щадь 405 м2. Вы­со­та дач­но­го до­ми­ка без крыши равна 2,5 м, ши­ри­на в 2 раза боль­ше вы­со­ты, а длина ос­но­ва­ния дач­но­го до­ми­ка на 11 м боль­ше его ши­ри­ны. Во­круг до­ми­ка за­ас­фаль­ти­ро­ва­ли до­рож­ку.

Aлия и Арман ре­ши­ли ого­ро­дить уча­сток за­бо­ром с во­ро­та­ми дли­ной 2 метра. Най­ди­те длину за­бо­ра (без учета ворот).

1) 405 м
2) 40 м
3) 82 м
4) 42 м
28.  
i

Для тру­до­устрой­ства на пред­при­я­тие при­сла­ли ре­зю­ме 3 эко­но­ми­ста, 5 ме­не­дже­ров и 4 про­грам­ми­ста.

Hа со­бе­се­до­ва­ния при­гла­ша­ли 2 эко­но­ми­ста или 3 ме­не­дже­ра, но вы­де­ли­ли на 5 дней мень­ше, чем ко­ли­че­ство воз­мож­ных спо­со­бов та­ко­го вы­бо­ра. Ука­жи­те ко­ли­че­ство дней, вы­де­лен­ных на со­бе­се­до­ва­ния.

1) 5 дней
2) 18 дней
3) 13 дней
4) 8 дней
29.  
i

Aлия и Арман ре­ши­ли обла­го­ро­дить свою дачу. Длина всего участ­ка 27 м, а его пло­щадь 405 м2. Вы­со­та дач­но­го до­ми­ка без крыши равна 2,5 м, ши­ри­на в 2 раза боль­ше вы­со­ты, а длина ос­но­ва­ния дач­но­го до­ми­ка на 11 м боль­ше его ши­ри­ны. Во­круг до­ми­ка за­ас­фаль­ти­ро­ва­ли до­рож­ку.

Eсли уве­ли­чить ши­ри­ну ос­но­ва­ния дач­но­го до­ми­ка на 3 м, а его длину на 4 м, то во сколь­ко раз уве­ли­чит­ся пло­щадь ос­но­ва­ния дач­но­го до­ми­ка.

1) в 1,5 раза
2) в 0,5 раза
3) в 2 раза
4) в 4 раза
30.  
i

Для тру­до­устрой­ства на пред­при­я­тие при­сла­ли ре­зю­ме 3 эко­но­ми­ста, 5 ме­не­дже­ров и 4 про­грам­ми­ста.

Bычис­ли­те ве­ро­ят­ность, что из всех, по­дав­ших ре­зю­ме, тру­до­устро­ят­ся 2 эко­но­ми­ста, 3 ме­не­дже­ра и 3 про­грам­ми­ста (ответ округ­ли­те до сотых).

1) 0,12
2) 0,24
3) 0,15
4) 0,21
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка минус 2. Уста­но­ви­те со­от­вет­ствия:

A) Нуль функ­ции

Б) Мно­же­ство зна­че­ний функ­ции

1) 1

2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

3) 0

4)  левая круг­лая скоб­ка минус 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

32.  
i

Рав­но­бед­рен­ная тра­пе­ция опи­са­на около окруж­но­сти, ра­ди­ус ко­то­рой равен 12. Бо­ко­вая сто­ро­ны тра­пе­ции равна 25. Уста­но­ви­те со­от­вет­ствия:

A) Сред­няя линия тра­пе­ции

Б) Вы­со­та тра­пе­ции

1) 20

2) 25

3) 21

4) 24

33.  
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x3, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x3

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) (30; 60)

2) (8; 12]

3) [70; 90]

4) [4; 9)

Даны урав­не­ния 3 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 2x пра­вая круг­лая скоб­ка = 27 и  ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та плюс 1 = x. Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем пер­во­го урав­не­ния, но не яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) −1

2) 2

3) 3

4) 1

35.  
i

Дана гео­мет­ри­че­ская про­грес­сия (bn), где b3  =  18 и b6  =  486. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем

A) S5

Б) 15 умно­жить на b_2

1) 240

2) 90

3) 30

4) 242

36.  
i

Из пред­ло­жен­ных ва­ри­ан­тов под­бе­ри­те на­ту­раль­ное число х так, чтобы зна­че­ние суммы 758 + х де­ли­лось на 9 без остат­ка.

1) 6
2) 7
3) 16
4) 5
5) 15
6) 14
37.  
i

Их пе­ре­чис­лен­ных ниже от­ве­тов вы­бе­ри­те те, ко­то­рые равны зна­че­нию вы­ра­же­ния  ко­си­нус 60 гра­ду­сов плюс \ctg дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
2) 1
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби
5)  целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
6) 0
38.  
i

Сумма трех чисел, со­став­ля­ю­щих ариф­ме­ти­че­скую про­грес­сию, у ко­то­рой раз­ность боль­ше нуля, равна 12. Если к этим чис­лам при­ба­вить со­от­вет­ствен­но 2, 5 и 20, то по­лу­чен­ные числа со­став­ля­ют пер­вые три члена гео­мет­ри­че­ской про­грес­сии. Най­ди­те эти три числа.

1) 1
2) 6
3) 4
4) 2
5) 5
6) 7
39.  
i

Ре­ши­те си­сте­му по­ка­за­тель­ных урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка 9 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка =729, новая стро­ка 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка :3 в сте­пе­ни левая круг­лая скоб­ка y плюс 1 пра­вая круг­лая скоб­ка =1. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби .

1) 2
2) 1
3)  ко­рень из 9
4) 4
5) 3
6)  ко­рень из 4
40.  
i

Дано: SABCD пи­ра­ми­да, SO — вы­со­та, ABCD — тра­пе­ция, AB = 9, CD = 4, AD = BC, O — центр впи­сан­ной окруж­но­сти, \angle SEO = 45 гра­ду­сов . Вы­чис­ли­те пло­щадь пол­ной по­верх­но­сти пи­ра­ми­ды.

1) 2 плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
2) 4 левая круг­лая скоб­ка 22 плюс 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
3) 39 левая круг­лая скоб­ка 1 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
4) 11 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
5) 1 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
6) 17