Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 144
1.  
i

Bыбе­ри­те вер­ные ра­вен­ства:

1. | минус 5| = 5

2. |5| = минус 5

3. |5| = 5

4.  минус |5| = 5

1) 3 и 4
2) 1 и 2
3) 2 и 4
4) 1 и 3
2.  
i

Вы­чис­ли­те: i в сте­пе­ни левая круг­лая скоб­ка 415 пра­вая круг­лая скоб­ка минус i в сте­пе­ни левая круг­лая скоб­ка 261 пра­вая круг­лая скоб­ка плюс i в сте­пе­ни левая круг­лая скоб­ка 2017 пра­вая круг­лая скоб­ка .

1) i в сте­пе­ни 7
2) 1 минус i
3) i в кубе
4)  минус i
3.  
i

Чет­верть числа 5 умно­жи­ли на число, об­рат­ное зна­че­нию от­но­ше­ния чисел 0,(7) к 0,(14). Какое число по­лу­чи­лось в ре­зуль­та­те всех этих дей­ствий?

1)  целая часть: 6, дроб­ная часть: чис­ли­тель: 7, зна­ме­на­тель: 8
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 22 конец дроби
3)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 22 конец дроби
4) 25
4.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби минус синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .

1) 1
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4) −2
5.  
i

За­ме­ни­те знак * од­но­чле­ном, так чтобы по­лу­чен­ный трёхчлен 6,25 q в квад­ра­те минус 15 q g плюс * можно было пред­ста­вить в виде квад­ра­та дву­чле­на

1) 9g2
2) 5g2
3) 9g
4) 3g2
6.  
i

При каких зна­че­ни­ях пе­ре­мен­ной x зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 5 x плюс 4, зна­ме­на­тель: 2 конец дроби боль­ше или равно зна­че­нию вы­ра­же­ния  дробь: чис­ли­тель: 31 минус 5 x, зна­ме­на­тель: 3 конец дроби .

1)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 2 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
7.  
i

Pешите си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний x минус y минус 2 = 0,2x минус 3y плюс 1 = 0. конец си­сте­мы .

1) (8; 5)
2) (7; 5)
3) (4; 7)
4) (5; 7)
8.  
i

Вы­чис­ли­те: \lim_x arrow 2 дробь: чис­ли­тель: тан­генс левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 x минус 8 конец дроби .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби
2) 1,5
3) 0,5
4) 0,25
9.  
i

Окруж­ность, впи­сан­ная в рав­но­бед­рен­ный тре­уголь­ник, делит в точке ка­са­ния одну из бо­ко­вых сто­рон на два от­рез­ка (как по­ка­за­но на ри­сун­ке), длины ко­то­рых равны 15 и 2, счи­тая от вер­ши­ны. Най­ди­те длину ос­но­ва­ния тре­уголь­ни­ка.

1) 7
2) 4
3) 6
4) 2
10.  
i

B еди­нич­ном кубе най­ди­те рас­сто­я­ние от вер­ши­ны В до плос­ко­сти (АСВ1).

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
11.  
i

Ре­ши­те урав­не­ние:  синус левая круг­лая скоб­ка 2x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка = 1.

1)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс Пи k, k при­над­ле­жит Z
2) 2 Пи k, k при­над­ле­жит Z
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс Пи k, k при­над­ле­жит Z
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k, k при­над­ле­жит Z
12.  
i

Pешите си­сте­му не­ра­венств

 си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в квад­ра­те минус 2 x плюс 1 конец дроби боль­ше или равно 0, дробь: чис­ли­тель: x в квад­ра­те минус 2 x минус 3, зна­ме­на­тель: левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те конец дроби мень­ше или равно 0. конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка 0 ; 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1 ; 2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 4 ; 6 пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка 1 ; бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка минус 1 ; 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1 ; 2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 2 ; 3 пра­вая квад­рат­ная скоб­ка
4) (3; 4)
13.  
i

Вы­чис­ли­те  при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка ко­си­нус левая круг­лая скоб­ка 2 x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка d x.

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
4)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
14.  
i

Cреди 100 то­ва­ров в ма­га­зи­не есть 50 то­ва­ров по акции. Най­ди­те ве­ро­ят­ность того, что три любых то­ва­ра ока­жут­ся по акции.

1)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 33 конец дроби
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 33 конец дроби
3)  дробь: чис­ли­тель: 8, зна­ме­на­тель: 99 конец дроби
4)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 33 конец дроби
15.  
i

В окруж­но­сти DC\perp AB, DE=5, AB=20. Длина диа­мет­ра CD равна

1) 34
2) 32
3) 25
4) 24
16.  
i

В па­рал­ле­ло­грам­ме ABCD дано: \vecAB = 2\veca минус \vecb, \vecAD = \veca плюс 3\vecb; |\veca| = 3; |\vecb| = 2 и  \angle левая круг­лая скоб­ка \veca; \vecb пра­вая круг­лая скоб­ка = 60 гра­ду­сов . Най­ди­те длины от­рез­ков AC и BD.

1) AC = ко­рень из: на­ча­ло ар­гу­мен­та: 133 конец ар­гу­мен­та ; BD = 7
2) AC = ко­рень из: на­ча­ло ар­гу­мен­та: 133 конец ар­гу­мен­та ; BD = ко­рень из 7
3) AC = ко­рень из: на­ча­ло ар­гу­мен­та: 105 конец ар­гу­мен­та ; BD = ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та
4) AC = 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та ; BD = ко­рень из: на­ча­ло ар­гу­мен­та: 70 конец ар­гу­мен­та
17.  
i

Най­ди­те наи­мень­шее ре­ше­ние не­ра­вен­ства 5 в сте­пе­ни левая круг­лая скоб­ка 3x минус 1 пра­вая круг­лая скоб­ка боль­ше или равно 25.

1) 0
2) 1
3) −2
4) 2
18.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 6 плюс 2x боль­ше или равно x минус 2,4x минус 5 мень­ше или равно 7. конец си­сте­мы .

1)  левая круг­лая скоб­ка минус 8; 3 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус 8; минус 3 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка минус 8; 3 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус 8; 3 пра­вая квад­рат­ная скоб­ка
19.  
i

Ука­жи­те общий вид пер­во­об­раз­ной для функ­ции: f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 в сте­пе­ни x .

1) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 2 конец дроби плюс C
2) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм x плюс C
3) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс C
4) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: e конец дроби плюс C
20.  
i

Ра­ди­ус верх­не­го ос­но­ва­ния усечённого ко­ну­са равен 2 м, вы­со­та — 6 м. Най­ди­те ра­ди­ус ниж­не­го ос­но­ва­ния, если его объём равен 38π м3.

1) 4 м
2) 2 м
3) 3 м
4) 1 м
21.  
i

Гра­нит­ный по­ста­мент для уста­нов­ки ме­мо­ри­аль­ной плиты имеет форму пра­виль­ной усе­чен­ной пи­ра­ми­ды, верх­няя пло­щад­ка — квад­рат сто­ро­ной 2 метра, сто­ро­на ниж­не­го ос­но­ва­ния 10 мет­ров, его вы­со­та 7 мет­ров.

Опре­де­лить объем по­ста­мен­та. Ответ округ­лить до целых.

1) 290 м3
2) 289 м3
3) 287 м3
4) 288 м3
22.  
i

Гра­нит­ный по­ста­мент для уста­нов­ки ме­мо­ри­аль­ной плиты имеет форму пра­виль­ной усе­чен­ной пи­ра­ми­ды, верх­няя пло­щад­ка — квад­рат сто­ро­ной 2 метра, сто­ро­на ниж­не­го ос­но­ва­ния 10 мет­ров, его вы­со­та 7 мет­ров.

Сколь­ко не­об­хо­ди­мо ко­ван­но­го де­ко­ра­тив­но­го угол­ка для об­рам­ле­ния бо­ко­вых углов (стык бо­ко­вых гра­ней) по­ста­мен­та.

1) 36 м
2) 57 м
3) 81 м
4) 49 м
23.  
i

Гра­нит­ный по­ста­мент для уста­нов­ки ме­мо­ри­аль­ной плиты имеет форму пра­виль­ной усе­чен­ной пи­ра­ми­ды, верх­няя пло­щад­ка — квад­рат сто­ро­ной 2 метра, сто­ро­на ниж­не­го ос­но­ва­ния 10 мет­ров, его вы­со­та 7 мет­ров.

Рас­счи­тать ко­ли­че­ство ка­мен­ной де­ко­ра­тив­ной шту­ка­тур­ки для вы­со­ко­ка­че­ствен­но­го ошту­ка­ту­ри­ва­ния бо­ко­вой по­верх­но­сти по­ста­мен­та. Рас­ход рас­тво­ра для де­ко­ра­тив­ной шту­ка­тур­ки 0,02 м3 на один квад­рат­ный метр. Ответ округ­ли­те до целых.

1) 5 м3
2) 4 м3
3) 3 м3
4) 6 м3
24.  
i

Гра­нит­ный по­ста­мент для уста­нов­ки ме­мо­ри­аль­ной плиты имеет форму пра­виль­ной усе­чен­ной пи­ра­ми­ды, верх­няя пло­щад­ка — квад­рат сто­ро­ной 2 метра, сто­ро­на ниж­не­го ос­но­ва­ния 10 мет­ров, его вы­со­та 7 мет­ров.

Най­ди­те массу под­став­ки, если удель­ная плот­ность гра­ни­та 2,5 г/см3. Ответ вы­ра­зить в кг.

1) 722300 кг
2) 722500 кг
3) 722250 кг
4) 722350 кг
25.  
i

Гра­нит­ный по­ста­мент для уста­нов­ки ме­мо­ри­аль­ной плиты имеет форму пра­виль­ной усе­чен­ной пи­ра­ми­ды, верх­няя пло­щад­ка — квад­рат сто­ро­ной 2 метра, сто­ро­на ниж­не­го ос­но­ва­ния 10 мет­ров, его вы­со­та 7 мет­ров.

Какой длины нужно по­ре­зать ко­ван­ную де­ко­ра­тив­ную ме­тал­ли­че­скую по­ло­су для за­креп­ле­ния ее от углов верх­не­го ос­но­ва­ния пер­пен­ди­ку­ляр­но реб­рам ниж­не­го ос­но­ва­ния. Ответ округ­ли­те до целых.

1) 64 м
2) 62 м
3) 60 м
4) 63 м
26.  
i

Вы­пол­ни­те дей­ствия  левая круг­лая скоб­ка 3 ко­рень из: на­ча­ло ар­гу­мен­та: 175 конец ар­гу­мен­та минус 5 ко­рень из: на­ча­ло ар­гу­мен­та: 28 конец ар­гу­мен­та плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 63 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в квад­ра­те минус 40 умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 0,027 конец ар­гу­мен­та .

1) 1250
2) 1372
3) 1260
4) 25 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
5)  29 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
6) 1360
27.  
i

Вы­бе­ри­те про­ме­жут­ки, со­дер­жа­щи­е­ся среди ре­ше­ний не­ра­вен­ства  синус x умно­жить на ко­си­нус x боль­ше или равно дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби на ин­тер­ва­ле  левая круг­лая скоб­ка 0; 3 Пи пра­вая круг­лая скоб­ка .

1)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 25 Пи , зна­ме­на­тель: 12 конец дроби ; дробь: чис­ли­тель: 29 Пи , зна­ме­на­тель: 12 конец дроби пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби ; дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 12 конец дроби пра­вая квад­рат­ная скоб­ка
5)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: 4 Пи , зна­ме­на­тель: 3 конец дроби пра­вая квад­рат­ная скоб­ка
6)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 3 конец дроби пра­вая квад­рат­ная скоб­ка
28.  
i

Вы­не­си­те мно­жи­те­ли из-под знака корня в вы­ра­же­нии  минус 3 ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 0,0256 x в сте­пе­ни левая круг­лая скоб­ка 12 конец ар­гу­мен­та y в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка , при  x мень­ше 0 и  y боль­ше 0.

1)  минус 1,6 x в квад­ра­те y
2)  минус целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 5 x ко­рень из: на­ча­ло ар­гу­мен­та: y конец ар­гу­мен­та
3)  дробь: чис­ли­тель: 6, зна­ме­на­тель: 5 конец дроби x в кубе y
4) 12 x ко­рень из: на­ча­ло ар­гу­мен­та: y конец ар­гу­мен­та
5)  целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 5 x в кубе y
6) 1,2 x в кубе y
29.  
i

Ука­жи­те про­ме­жут­ки, в ко­то­рых лежат экс­тре­му­мы функ­ции: y = \lg левая круг­лая скоб­ка 1 минус x в квад­ра­те пра­вая круг­лая скоб­ка .

1)  левая квад­рат­ная скоб­ка минус 1; 1 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус 3; 0 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка 1; 6 пра­вая квад­рат­ная скоб­ка
6)  левая круг­лая скоб­ка минус 8; 8 пра­вая круг­лая скоб­ка
30.  
i

Hай­ди­те рас­сто­я­ние от точки А (1; 2; 3) до плос­ко­сти, за­дан­ной урав­не­ни­ем 2x плюс у плюс 2z=4.

1) 4
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби
3) 0,5
4) 1
5) 2
6)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
31.  
i

Ре­ши­те урав­не­ние: z в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 2z в квад­ра­те плюс 1=0.

1) z=1 минус i
2) z=i
3) z=2i
4) z= минус i
5) z= минус 2i
6) z=1
32.  
i

Вы­бе­ри­те целые числа, яв­ля­ю­щи­е­ся ре­ше­ни­я­ми не­ра­вен­ства:  2 в сте­пе­ни левая круг­лая скоб­ка минус 2 x плюс 2 пра­вая круг­лая скоб­ка боль­ше или равно 2 в квад­ра­те .

1) −1
2) 5
3) 1
4) 0
5) 6
6) −5
33.  
i

Ука­жи­те про­ме­жут­ки, со­дер­жа­щие зна­че­ние хорды, на ко­то­рую опи­ра­ет­ся угол в 120°, впи­сан­ный в окруж­ность ра­ди­у­са  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

1) (1; 5)
2) (2; 4)
3) (4; 7)
4) (0; 3)
5) (2; 5)
6) (5; 8)
34.  
i

Най­ди­те сумму бес­ко­неч­ной гео­мет­ри­че­ской про­грес­сии, опре­де­ля­ю­щей­ся по фор­му­ле b_n = 6 умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни n .

1) S = 9
2) S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
3) S = 3
4) S = 2
35.  
i

Точка O — центр шара, точка O1 — центр круга — се­че­ния шара. Най­ди­те объем шара, если O1N = 6 и угол O1NO равен 30°.

1) 256 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та Пи
2) 85 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та Пи
3) 256 Пи
4) 128 ко­рень из: на­ча­ло ар­гу­мен­та: 12 конец ар­гу­мен­та Пи
5) 255 ко­рень из: на­ча­ло ар­гу­мен­та: 3 Пи конец ар­гу­мен­та
6) 16 ко­рень из: на­ча­ло ар­гу­мен­та: 256 конец ар­гу­мен­та Пи