Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 12326
1.  
i

Вы­чис­ли­те 0,(53) + 1,(2).

1)  целая часть: 1, дроб­ная часть: чис­ли­тель: 20, зна­ме­на­тель: 33
2)  целая часть: 1, дроб­ная часть: чис­ли­тель: 25, зна­ме­на­тель: 33
3)  целая часть: 1, дроб­ная часть: чис­ли­тель: 25, зна­ме­на­тель: 30
4)  целая часть: 2, дроб­ная часть: чис­ли­тель: 25, зна­ме­на­тель: 33
2.  
i

Упро­сти­те вы­ра­же­ние  левая круг­лая скоб­ка 2 минус c пра­вая круг­лая скоб­ка в квад­ра­те минус c левая круг­лая скоб­ка c плюс 4 пра­вая круг­лая скоб­ка , най­ди­те его зна­че­ние при c=0,5. В ответ за­пи­ши­те по­лу­чен­ное число.

1) 3
2) 0
3) 1
4) 2
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  левая круг­лая скоб­ка ко­си­нус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби плюс ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби минус синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби пра­вая круг­лая скоб­ка .

1)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2) 1
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4.  
i

Раз­ло­жи­те квад­рат­ный трех­член 2x в квад­ра­те плюс 7x минус 15 на мно­жи­те­ли.

1)  левая круг­лая скоб­ка 2x минус 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 2x плюс 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2x минус 3 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2x минус 3 пра­вая круг­лая скоб­ка
5.  
i

Oтно­ше­ние двух чисел равно 0,8. Сумма этих чисел равна 9, тогда мень­шее число при­над­ле­жит чис­ло­во­му про­ме­жут­ку.

1) (4; 5)
2) (4; 6]
3) (4; 5]
4) (0; 5)
6.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 16 минус 2x плюс 3 левая круг­лая скоб­ка y плюс 4 пра­вая круг­лая скоб­ка = 17,2 левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка минус 2 левая круг­лая скоб­ка y минус 5 пра­вая круг­лая скоб­ка минус 44 = 0. конец си­сте­мы .

1) (55; 33)
2) (−5; 3)
3) (5; 3)
4) (−55; 33)
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка ко­си­нус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка минус синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.

1)  синус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс ко­си­нус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка плюс C
2)  синус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка плюс C
3)  синус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс ко­си­нус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка плюс C
4)  синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс ко­си­нус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка плюс C
8.  
i

Pадиус кру­го­во­го сек­то­ра равен 6, а его угол равен 30º. Сек­тор свер­нут в ко­ни­че­скую по­верх­ность. Объем по­лу­чен­но­го ко­ну­са равен

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 143 конец ар­гу­мен­та Пи , зна­ме­на­тель: 4 конец дроби
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 143 конец ар­гу­мен­та Пи , зна­ме­на­тель: 8 конец дроби
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 143 конец ар­гу­мен­та Пи , зна­ме­на­тель: 6 конец дроби
4)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 143 конец ар­гу­мен­та Пи , зна­ме­на­тель: 24 конец дроби
9.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 2x минус 1, зна­ме­на­тель: x конец дроби мень­ше 0, дробь: чис­ли­тель: 3x плюс 5, зна­ме­на­тель: x минус 2 конец дроби мень­ше или равно 0. конец си­сте­мы .

1) (0; 0,5)
2) [−0,6; 0,5)
3) [0; 0,5]
4)  левая квад­рат­ная скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
10.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 4x= дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 24 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби
3)  дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 16 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 16 конец дроби
5)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции \ левая квад­рат­ная скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 2x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка минус 3x в квад­ра­те пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 1;5 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби минус x в кубе минус дробь: чис­ли­тель: 11, зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби плюс x в кубе
3)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби минус x в кубе плюс дробь: чис­ли­тель: 11, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: x в кубе , зна­ме­на­тель: 3 конец дроби минус x в квад­ра­те плюс дробь: чис­ли­тель: 11, зна­ме­на­тель: 3 конец дроби
12.  
i

Ре­ши­те не­ра­вен­ство:  левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5x плюс 10 пра­вая круг­лая скоб­ка боль­ше или равно 0

1)  левая квад­рат­ная скоб­ка минус 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка минус 2; 3 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 3; 4 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка минус 2; 3 пра­вая квад­рат­ная скоб­ка и {4}
13.  
i

Bыра­зи­те в ра­ди­а­нах ве­ли­чи­ну внут­рен­не­го угла пра­виль­но­го тре­уголь­ни­ка.

1)  дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
14.  
i

Най­ди­те наи­мень­шее целое число, удо­вле­тво­ря­ю­щее не­ра­вен­ству:  при­над­ле­жит t\limits_0 в сте­пе­ни t левая круг­лая скоб­ка 2x плюс 3 пра­вая круг­лая скоб­ка dx мень­ше или равно 4.

1) −5
2) 1
3) 4
4) −4
15.  
i

B еди­нич­ном кубе най­ди­те рас­сто­я­ние от вер­ши­ны В до плос­ко­сти (АСВ1).

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
16.  
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та =2.

1) 2
2) 0
3) 3
4) 1
17.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 1 конец ар­гу­мен­та мень­ше x минус 2,5x плюс 10 боль­ше или равно 0. конец си­сте­мы .

1)  левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 1 пра­вая квад­рат­ная скоб­ка \cup левая круг­лая скоб­ка 5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 1 пра­вая квад­рат­ная скоб­ка \cup левая круг­лая скоб­ка 2 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3) [1; 2]
4)  левая круг­лая скоб­ка 5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=3x в квад­ра­те минус 3x плюс 3,y=9x минус 2,x = 0,5,x = 1.

1)  дробь: чис­ли­тель: 28 ко­рень из: на­ча­ло ар­гу­мен­та: 21 конец ар­гу­мен­та , зна­ме­на­тель: 11 конец дроби
2)  минус дробь: чис­ли­тель: 9, зна­ме­на­тель: 8 конец дроби
3)  дробь: чис­ли­тель: 28 ко­рень из: на­ча­ло ар­гу­мен­та: 23 конец ар­гу­мен­та , зна­ме­на­тель: 9 конец дроби
4)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 8 конец дроби
19.  
i

Сто­ро­на ромба равна 12. Ко­си­нус од­но­го из его углов равен  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби . Пло­щадь ромба равна

1) 40
2) 48
3) 24 ко­рень из 5
4) 48 ко­рень из 5
20.  
i

Вы­чис­ли­те сумму бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии: 0,6; 0,06; 0,006,...

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби
3)  дробь: чис­ли­тель: 8, зна­ме­на­тель: 9 конец дроби
4)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
21.  
i

Упро­сти­те вы­ра­же­ние: \overrightarrowNF плюс \overrightarrowFA плюс левая круг­лая скоб­ка \overrightarrowLK минус \overrightarrowLA пра­вая круг­лая скоб­ка минус \overrightarrowMD плюс \overrightarrowKD.

1) \overrightarrowAF
2) \overrightarrowNM
3) \overrightarrowMD
4) \overrightarrowND
22.  
i

 ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка ac пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та равен?

1)  минус ac
2) a в квад­ра­те c в квад­ра­те
3)  минус |ac|
4) |ac|
23.  
i

Ре­ши­те урав­не­ние: 4 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка 2x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2x минус 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка = 2 ко­рень 3 сте­пе­ни из 2 .

1) 4
2) 3
3) 8
4) 9
24.  
i

Най­ди­те наи­боль­шее целое ре­ше­ние не­ра­вен­ства 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 17 пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка минус x минус 16 пра­вая круг­лая скоб­ка боль­ше 1,08.

1) −15
2) −14
3) 17
4) 18
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в квад­ра­те минус x плюс 2,x_0= минус 1.

1) x минус 1
2)  минус 3x минус 1
3) 3x плюс 1
4)  минус 3x плюс 1
26.  
i

Торт в форме ци­лин­дра. Вы­со­та торта 20 см. Диа­метр 30 см. Сред­няя плот­ность торта 0,4 г/см3.

Чтобы раз­ре­зать торт про­ве­ли пять диа­мет­ров и по­лу­чи­ли?

1) 12 ку­соч­ков
2) 6 ку­соч­ков
3) 10 ку­соч­ков
4) 9 ку­соч­ков
27.  
i

Hа ри­сун­ке изоб­ра­жен ого­род тра­пе­ци­е­вид­ной формы за­се­ян­ный ово­ща­ми (верх­нее ос­но­ва­ние тра­пе­ции равно 180 м, ниж­нее ос­но­ва­ние равно 260 м, вы­со­та равна 200 м) и до­ро­га в виде па­рал­ле­ло­грам­ма ши­ри­ной 5 м, про­хо­дя­щая через ого­род.

Общая пло­щадь ого­ро­да и до­ро­ги равна

1) 13000 м2
2) 50000 м2
3) 44000 м2
4) 90000 м2
28.  
i

Торт в форме ци­лин­дра. Вы­со­та торта 20 см. Диа­метр 30 см. Сред­няя плот­ность торта 0,4 г/см3.

Для упа­ков­ки тор­тов фаб­ри­ка из­го­тав­ли­ва­ет ко­роб­ки в виде пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да. Для дан­но­го торта нужно из­го­то­вить ко­роб­ку объём ко­то­рой равен?

1) 1,8 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка см в кубе
2) 1,6 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка см в кубе
3) 1,8 умно­жить на 10 в кубе см в кубе
4) 9 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка см в кубе
29.  
i

Драй­ве­ра­ми в неф­те­до­бы­че стра­ны оста­ют­ся три круп­ных неф­те­га­зо­вых про­ек­та — Тен­гиз, Ка­ра­ча­га­нак и Ка­ша­ган. Они вно­сят су­ще­ствен­ный вклад в эко­но­ми­че­ский рост стра­ны в сред­не­сроч­ном пе­ри­о­де. Объем до­бы­чи нефти будет расти и по про­гно­зу Ми­ни­стер­ства энер­ге­ти­ки РК к 2025 году вый­дет на уро­вень в 105 млн. тонн в год. Для этого, на всех трех ме­сто­рож­де­ни­ях, ре­а­ли­зу­ют­ся про­ек­ты даль­ней­ше­го рас­ши­ре­ния и про­дле­ния до­бы­чи.

Ис­поль­зуя дан­ные диа­грам­мы, опре­де­ли­те, во сколь­ко раз боль­ше нефти до­бы­ва­ет­ся су­пер­ги­ган­том «Тен­гиз­шев­ройл» по срав­не­нию с «Ман­ги­ста­у­му­най­каз» (ответ за­пи­ши­те в виде обык­но­вен­ной дроби)

1)  целая часть: 6, дроб­ная часть: чис­ли­тель: 6, зна­ме­на­тель: 7
2)  целая часть: 4, дроб­ная часть: чис­ли­тель: 32, зна­ме­на­тель: 71
3)  целая часть: 2, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 7
4)  целая часть: 3, дроб­ная часть: чис­ли­тель: 5, зна­ме­на­тель: 71
30.  
i

Драй­ве­ра­ми в неф­те­до­бы­че стра­ны оста­ют­ся три круп­ных неф­те­га­зо­вых про­ек­та — Тен­гиз, Ка­ра­ча­га­нак и Ка­ша­ган. Они вно­сят су­ще­ствен­ный вклад в эко­но­ми­че­ский рост стра­ны в сред­не­сроч­ном пе­ри­о­де. Объем до­бы­чи нефти будет расти и по про­гно­зу Ми­ни­стер­ства энер­ге­ти­ки РК к 2025 году вый­дет на уро­вень в 105 млн. тонн в год. Для этого, на всех трех ме­сто­рож­де­ни­ях, ре­а­ли­зу­ют­ся про­ек­ты даль­ней­ше­го рас­ши­ре­ния и про­дле­ния до­бы­чи.

Hай­ди­те раз­ни­цу гра­дус­ной меры сек­то­ра, со­от­вет­ству­ю­ще­го объ­е­му до­бы­чи нефти су­пер­ги­ган­том «Тен­гиз­шев­ройл» и гра­дус­ной меры сек­то­ра, со­от­вет­ству­ю­ще­го объ­е­му до­бы­чи нефти НКОК (Ка­ша­ган) на кру­го­вой диа­грам­ме (ответ округ­ли­те до целых).

1) 74°
2) 65°
3) 61°
4) 100°
31.  
i

Квад­ра­тич­ная функ­ция за­да­на урав­не­ни­ем y = x в квад­ра­те плюс 2x минус 3. Уста­но­ви­те со­от­вет­ствие между ну­ля­ми функ­ции и ко­ор­ди­на­та­ми вер­ши­ны па­ра­бо­лы.

A)  Нули функ­ции

Б)  Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1)  (−1; −4)

2)  {3; −1}

3)  {−3; 1}

4)  (1; 4)

32.  
i

Вы­со­та рав­но­бед­рен­но­го тре­уголь­ни­ка равна 4, ос­но­ва­ние равно 6. Уста­но­ви­те со­от­вет­ствие между пло­ща­дью тре­уголь­ни­ка, ра­ди­у­сом окруж­но­сти, опи­сан­ной около него и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Пло­щадь тре­уголь­ни­ка

Б) Ра­ди­ус окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка

1)  дробь: чис­ли­тель: 25, зна­ме­на­тель: 8 конец дроби

2) 12

3) 24

4) 16

33.  
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в кубе левая круг­лая скоб­ка 2x плюс 4 пра­вая круг­лая скоб­ка . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) (−1; 1)

2) (0; 3)

3) [7; 12)

4) [−4; 0)

34.  
i

Даны урав­не­ния  дробь: чис­ли­тель: x в квад­ра­те минус 6x плюс 5, зна­ме­на­тель: x минус 1 конец дроби = 0 и  левая круг­лая скоб­ка x в квад­ра­те минус 4 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та = 0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 0, 3, 4

2) 5, 2, 8

3) −1, 0, 3

4) 5, 1, 2

35.  
i

Вто­рой член ариф­ме­ти­че­ской про­грес­сии (an) на 7,2 боль­ше ше­сто­го члена. Чет­вер­тый член про­грес­сии равен 0,7. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) d

Б) a1

1) −2,4

2) 6,1

3) −1,8

4) 7,9

36.  
i

Если

 S = дробь: чис­ли­тель: 0,536 в квад­ра­те минус 0,464 в квад­ра­те , зна­ме­на­тель: 3,6 в квад­ра­те минус 7,2 умно­жить на 2,4 плюс 2,4 в квад­ра­те конец дроби

то верны сле­ду­ю­щие утвер­жде­ния.

1) если S — это 40% числа k, то  k =0,125
2) если S — это 50% числа k, то  k =0,125
3) 40% от числа S равны 0,2
4) если S — это 0,2 числа n, то  n =2,5
5) 20% числа S мень­ше 40% числа S на 0,1
6) 40% от числа S равны 0,02
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус 68 гра­ду­сов ко­си­нус 23 гра­ду­сов минус ко­си­нус 68 гра­ду­сов синус 23 гра­ду­сов .

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3) 0
4) 1
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6) 2
38.  
i

Знаем, что (an) — ариф­ме­ти­че­ская про­грес­сия, седь­мой член, ко­то­рой равен 5, тогда сумма три­на­дца­ти пер­вых чле­нов этой про­грес­сии равна

1) −65
2) 65
3)  минус 5 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та
4) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та
5) 13 ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та
6) 5 ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка 13 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
39.  
i

Ре­ши­те си­сте­му, со­дер­жа­щую ир­ра­ци­о­наль­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка ко­рень из: на­ча­ло ар­гу­мен­та: x минус y плюс 5 конец ар­гу­мен­та =3, новая стро­ка ко­рень из: на­ча­ло ар­гу­мен­та: x плюс y минус 5 конец ар­гу­мен­та = минус 2x плюс 11. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби .

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 9 конец ар­гу­мен­та
2) 5
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби
4) 3
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та
6)  ко­рень из: на­ча­ло ар­гу­мен­та: 16 конец ар­гу­мен­та
40.  
i

Сто­ро­ны ос­но­ва­ния пря­мо­го па­рал­ле­ле­пи­пе­да равны 6 дм и 8 дм. Из­вест­но, что мень­шая диа­го­наль па­рал­ле­ле­пи­пе­да равна 9 дм, а одна из диа­го­на­лей ос­но­ва­ния равна 12 дм. Най­ди­те бо­ко­вое ребро и боль­шую диа­го­наль пря­мо­го па­рал­ле­ле­пи­пе­да.

1) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та дм
2) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та дм
3) 5 дм
4) 13 дм
5) 6 дм
6) 8 дм