Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Задания Д2 A2. Задания реальной версии ЕНТ 2021 года на позиции 2
1) 4 и −4
2) 3 и −3
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби и  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 16 конец дроби и  минус дробь: чис­ли­тель: 9, зна­ме­на­тель: 16 конец дроби
5) 3 и −3
2.  
i

Pешите урав­не­ние: 8 левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка плюс 3 левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка = минус 21.

1) 0,1
2) 1
3) 1,2
4) 0,2
5) 2
3.  
i

Ко­рень урав­не­ния y = y', при y = x в квад­ра­те плюс 1 равен?

1) 3
2) 4
3) 2
4) 5
5) 1
4.  
i

Ука­жи­те урав­не­ние, не яв­ля­ю­ще­е­ся ли­ней­ным урав­не­ни­ем с двумя пе­ре­мен­ны­ми.

1)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 7 конец дроби x минус y = 7
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 7x конец дроби минус y = минус 7
3)  дробь: чис­ли­тель: 5x, зна­ме­на­тель: 7 конец дроби плюс y = 7
4)  дробь: чис­ли­тель: 5x, зна­ме­на­тель: 7 конец дроби минус y = минус 7
5)  дробь: чис­ли­тель: 5x, зна­ме­на­тель: 7 конец дроби плюс y = минус 7
1) −1
2) 0
3) 3
4) −2
5) 6
1) −0,4
2) −2,5 и −5
3) −2,5
4) −0,4 и −5
5) −0,4 и −2,5
7.  
i

Из дан­ных пар чисел ука­жи­те ту, ко­то­рая яв­ля­ет­ся ре­ше­ни­ем урав­не­ния 6x минус 5y плюс 12 = 0.

1) (2; 1)
2) (3; −2)
3) (5; 6)
4) (0; 2,4)
5) (1; −1)
1)  ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та и  минус ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та и  минус ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби и  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 16 конец дроби и  минус дробь: чис­ли­тель: 9, зна­ме­на­тель: 16 конец дроби
5)  дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби и  минус дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби
9.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  1,5 умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 6,25 конец ар­гу­мен­та плюс 2 умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 11,56 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 28,09 конец ар­гу­мен­та .

1)  минус целая часть: 5, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 4
2) −4,5
3)  целая часть: 5, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3
4)  целая часть: 5, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 4
5) 3,4
10.  
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та =2.

1) 2
2) 0
3) 3
4) 1
5) 4
11.  
i

Ре­ши­те урав­не­ние: 22 минус левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 7 минус 5x пра­вая круг­лая скоб­ка .

1) 2
2) 3
3) −2
4) 0
5) −1
12.  
i

Ре­ши­те урав­не­ние: \abs2x минус 1=4.

1) 1
2) 1,5
3) 0
4) −2,5
5) 2,5; −1,5
13.  
i

Ре­ши­те урав­не­ние: 2 левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка =1 минус 3 x .

1) 6
2) 5
3) 0
4) −5
5) −1

Ре­ши­те урав­не­ние:  синус левая круг­лая скоб­ка 2x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка = 1.

1)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс Пи k, k при­над­ле­жит Z
2) 2 Пи k, k при­над­ле­жит Z
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс Пи k, k при­над­ле­жит Z
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k, k при­над­ле­жит Z
5) \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k, k при­над­ле­жит Z
1) −10; 4
2) −2; 8
3) −8; 2
4) −2; 6
5) −4; 10
16.  
i

3на­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 7 конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та плюс 7 конец дроби крат­но?

1) 3
2) 6
3) 7
4) 5
5) 4
17.  
i

Ре­ши­те урав­не­ние:  дробь: чис­ли­тель: x в квад­ра­те минус x минус 2, зна­ме­на­тель: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те конец дроби =0.

1) 1; минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2) 0; 1
3) 2
4) −1
5) 2; −1
18.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния: 4 умно­жить на \abs2x плюс 7 минус 5=31.

1) 4
2) 8
3) −8
4) 1
5) −4
19.  
i

Ре­ши­те урав­не­ние  дробь: чис­ли­тель: 2x в квад­ра­те , зна­ме­на­тель: x минус 2 конец дроби = дробь: чис­ли­тель: 6 минус 7x, зна­ме­на­тель: 2 минус x конец дроби .

1) 5,5
2) 3,5
3) 7,5
4) 1,5
5) 9,5
20.  
i

По­ло­жи­тель­ный ко­рень  ин­те­грал пре­де­лы: от 0 до t, левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка dx =6 равен?

1) 6
2) 4
3) 5
4) 2
5) 1