Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 35808
1.  
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: ко­рень из: на­ча­ло ар­гу­мен­та: 28 минус 16 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та конец ар­гу­мен­та конец ар­гу­мен­та .

1) 2 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус 1
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та плюс 1
4) 2 минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка a плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: a конец дроби плюс 2 пра­вая круг­лая скоб­ка умно­жить на дробь: чис­ли­тель: 1, зна­ме­на­тель: a плюс 1 конец дроби при a= минус 5.

1) 0,4
2) 1
3) 0,2
4) 0,8
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  минус 18 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та синус левая круг­лая скоб­ка минус 135 гра­ду­сов пра­вая круг­лая скоб­ка .

1) 18
2)  минус 18 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) −9
4) 9
4.  
i

При­ве­ди­те од­но­член 3a в кубе b в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка a в сте­пе­ни 8 b в сте­пе­ни 4 к стан­дарт­но­му виду.

1) 3a в сте­пе­ни левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка
2) 3a в сте­пе­ни левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка b в кубе
3) 3a в кубе b в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
4) a в сте­пе­ни левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка b в кубе
5.  
i

Ре­ши­те урав­не­ние:  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби y минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1) −1
2) 2
3) 1
4) 0
6.  
i

Pешите си­сте­му урав­не­ний  си­сте­ма вы­ра­же­ний 3 x минус 2 y=4, 5 x плюс 2 y=20. конец си­сте­мы .

1) (3; −2,5)
2) (2,5; 3)
3) (−2,5; −3)
4) (3; 2,5)
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в квад­ра­те конец дроби плюс дробь: чис­ли­тель: минус x в кубе плюс 5x в квад­ра­те минус 6x плюс 3, зна­ме­на­тель: x в кубе конец дроби пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 10x минус 3, зна­ме­на­тель: 2x в квад­ра­те конец дроби плюс 3 на­ту­раль­ный ло­га­рифм x плюс C
2)  дробь: чис­ли­тель: 10x минус 3, зна­ме­на­тель: 2x в квад­ра­те конец дроби плюс 4 на­ту­раль­ный ло­га­рифм x плюс C
3)  дробь: чис­ли­тель: 10x плюс 5, зна­ме­на­тель: 2x в квад­ра­те конец дроби плюс 3 на­ту­раль­ный ло­га­рифм x плюс C
4)  дробь: чис­ли­тель: 8x минус 3, зна­ме­на­тель: 2x в квад­ра­те конец дроби минус 3 на­ту­раль­ный ло­га­рифм x плюс C
8.  
i

Ци­линдр с ра­ди­у­сом ос­но­ва­ния R = 2 ко­рень из 3 см впи­сан в пра­виль­ную тре­уголь­ную приз­му. Най­ди­те пло­щадь одной бо­ко­вой грани приз­мы, если вы­со­та ци­лин­дра 7 см.

1) 85 см2
2) 80 см2
3) 84 см2
4) 90 см2
9.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний синус 2x боль­ше 0, ко­си­нус 2x мень­ше или равно дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби . конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
2)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи n; Пи плюс 2 Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи n пра­вая квад­рат­ная скоб­ка , n при­над­ле­жит Z
10.  
i

Ре­ши­те урав­не­ние:  синус левая круг­лая скоб­ка 2x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка = 1.

1)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс Пи k, k при­над­ле­жит Z
2) 2 Пи k, k при­над­ле­жит Z
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс Пи k, k при­над­ле­жит Z
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k, k при­над­ле­жит Z
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =5x левая круг­лая скоб­ка x в квад­ра­те плюс 4 пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 2;3 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 10x в квад­ра­те минус 57
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 10x в квад­ра­те
3)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби x в кубе плюс 10x в квад­ра­те минус 57
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 10x
12.  
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 4, зна­ме­на­тель: 2x минус 9 конец дроби боль­ше 0.

1) (−4; 4)
2)  левая круг­лая скоб­ка минус 4,5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 4,5 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 4,5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
13.  
i

Най­ди­те пло­щадь за­штри­хо­ван­ной фи­гу­ры:

1) 4,5 кв. ед.
2) 3 кв. ед.
3) 1,5 кв. ед.
4) 6 кв. ед.
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от минус 4 до 1, левая круг­лая скоб­ка 7x в квад­ра­те минус 3x плюс 11 пра­вая круг­лая скоб­ка dx.

1)  минус дробь: чис­ли­тель: 1375, зна­ме­на­тель: 6 конец дроби
2)  дробь: чис­ли­тель: 1375, зна­ме­на­тель: 6 конец дроби
3) 220
4)  дробь: чис­ли­тель: 1390, зна­ме­на­тель: 6 конец дроби
15.  
i

Ящик в форме пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да имеет квад­рат­ное дно. Вы­со­та ящика 80 см. Диа­го­наль бо­ко­вой грани равна 1 м, тогда сто­ро­на ос­но­ва­ния ящика равна

1) 0,5 м
2) 0,4 м
3) 0,45 м
4) 0,6 м
16.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния 2x умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 7x плюс 18 конец ар­гу­мен­та =x в квад­ра­те плюс 7x плюс 18.

1) 5
2) 7
3) 9
4) 12
17.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 5 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка 1 минус x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка мень­ше 3, ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 22 плюс 3 в сте­пе­ни x пра­вая круг­лая скоб­ка боль­ше минус 2. конец си­сте­мы .

1)  левая круг­лая скоб­ка минус 2; минус 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0; 1 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус 2; 1 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус 15; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус 2; 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс 3,y=3, минус 2 мень­ше или равно x мень­ше или равно 4.

1) 14
2) 28
3) 18
4) 24
19.  
i

В тра­пе­цию, у ко­то­рой ниж­нее ос­но­ва­ние в два раза боль­ше верх­не­го и бо­ко­вая сто­ро­на равна 9, впи­са­на окруж­ность. Ра­ди­ус окруж­но­сти равен:

1) 3
2)  ко­рень из 7
3) 2 ко­рень из 3
4) 3 ко­рень из 2
20.  
i

Чис­ло­вая по­сле­до­ва­тель­ность за­да­на усло­ви­я­ми x_n плюс 1 = x_n минус 2, x_1 = 3. Какое из ука­зан­ных чисел равно x3?

1) −3
2) 1
3) −2
4) −1
21.  
i

Най­ди­те ко­ор­ди­на­ты век­то­ра \vecp, если при па­рал­лель­ном пе­ре­но­се на век­тор \vecp точка A левая круг­лая скоб­ка минус 5;6; минус 7 пра­вая круг­лая скоб­ка пе­ре­хо­дит в точку B, а B левая круг­лая скоб­ка 1;2;3 пра­вая круг­лая скоб­ка .

1) \ левая квад­рат­ная скоб­ка \vecp левая круг­лая скоб­ка 6; минус 2;8 пра­вая круг­лая скоб­ка \ пра­вая квад­рат­ная скоб­ка
2) \ левая квад­рат­ная скоб­ка \vecp левая круг­лая скоб­ка 6; минус 4;10 пра­вая круг­лая скоб­ка \ пра­вая квад­рат­ная скоб­ка
3) \ левая квад­рат­ная скоб­ка \vecp левая круг­лая скоб­ка 6; минус 4;8 пра­вая круг­лая скоб­ка \ пра­вая квад­рат­ная скоб­ка
4) \ левая квад­рат­ная скоб­ка \vecp левая круг­лая скоб­ка 5; минус 2;10 пра­вая круг­лая скоб­ка \ пра­вая квад­рат­ная скоб­ка
22.  
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та минус 3, при x боль­ше минус 1.

1)  минус x минус 4
2) x минус 2
3)  минус x минус 2
4) x минус 4
23.  
i

Ре­ши­те урав­не­ние \log _2\log _3 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =2.

1) 27
2) 26
3) 80
4) 81
24.  
i

Ре­ши­те не­ра­вен­ство  ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 3 конец ар­гу­мен­та боль­ше или равно ко­рень из: на­ча­ло ар­гу­мен­та: 4x минус 1 конец ар­гу­мен­та .

1)  левая квад­рат­ная скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2) нет ре­ше­ний
3)  левая квад­рат­ная скоб­ка 1;2 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;2 пра­вая квад­рат­ная скоб­ка
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = тан­генс x,x_0= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби .

1) y = минус дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби x минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 3 конец дроби
2) y = дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби x минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 3 конец дроби
3) y = дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби x плюс дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 3 конец дроби
4) y = дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби x минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
26.  
i

Для тру­до­устрой­ства на пред­при­я­тие при­сла­ли ре­зю­ме 3 эко­но­ми­ста, 5 ме­не­дже­ров и 4 про­грам­ми­ста.

Для новых 3 про­грам­ми­стов име­ет­ся 4 ра­бо­чих места, обо­ру­до­ван­ных пер­со­наль­ны­ми ком­пью­те­ра­ми. Ука­жи­те ко­ли­че­ство спо­со­бов, ко­то­ры­ми но­вич­ки могут вы­брать себе ра­бо­чее место.

1) 26
2) 21
3) 18
4) 24
27.  
i

Торт в форме ци­лин­дра. Вы­со­та торта 20 см. Диа­метр 30 см. Сред­няя плот­ность торта 0,4 г/см3.

Най­ди­те объём всего торта  левая круг­лая скоб­ка Пи \approx 3 пра­вая круг­лая скоб­ка .

1) 15 500 см3
2) 14 000 см3
3) 13 500 см3
4) 13 000 см3
28.  
i

Aлия и Арман ре­ши­ли обла­го­ро­дить свою дачу. Длина всего участ­ка 27 м, а его пло­щадь 405 м2. Вы­со­та дач­но­го до­ми­ка без крыши равна 2,5 м, ши­ри­на в 2 раза боль­ше вы­со­ты, а длина ос­но­ва­ния дач­но­го до­ми­ка на 11 м боль­ше его ши­ри­ны. Во­круг до­ми­ка за­ас­фаль­ти­ро­ва­ли до­рож­ку.

Hай­ди­те объем дач­но­го до­ми­ка (без учета крыши дома).

1) 105 м3
2) 100 м3
3) 400 м3
4) 200 м3
29.  
i

Aлия и Арман ре­ши­ли обла­го­ро­дить свою дачу. Длина всего участ­ка 27 м, а его пло­щадь 405 м2. Вы­со­та дач­но­го до­ми­ка без крыши равна 2,5 м, ши­ри­на в 2 раза боль­ше вы­со­ты, а длина ос­но­ва­ния дач­но­го до­ми­ка на 11 м боль­ше его ши­ри­ны. Во­круг до­ми­ка за­ас­фаль­ти­ро­ва­ли до­рож­ку.

Eсли уве­ли­чить ши­ри­ну ос­но­ва­ния дач­но­го до­ми­ка на 3 м, а его длину на 4 м, то во сколь­ко раз уве­ли­чит­ся пло­щадь ос­но­ва­ния дач­но­го до­ми­ка.

1) в 1,5 раза
2) в 0,5 раза
3) в 2 раза
4) в 4 раза
30.  
i

Чай­ный двор

По­су­да яв­ля­ет­ся то­ва­ром на­род­но­го по­треб­ле­ния и оце­ни­ва­ет­ся не толь­ко как пред­мет быта, но и как эле­мент де­ко­ра. Спрос на нее все­гда оста­ет­ся на до­ста­точ­но вы­со­ком уров­не по ряду при­чин. На се­го­дняш­ний день рынок пред­став­лен мно­го­об­ра­зи­ем то­ва­ров раз­лич­ных видов по­су­ды и це­но­вых ка­те­го­рий, что поз­во­ля­ет удо­вле­тво­рить любой спрос.

В ма­га­зи­не «Чай­ный двор» вы­став­ле­ны на про­да­жу раз­лич­ный ас­сор­ти­мент чай­ной по­су­ды на­чи­ная от ложки для чая, за­кан­чи­вая по­су­дой для чай­ных це­ре­мо­ний из раз­лич­ных ме­тал­лов и ма­те­ри­а­лов. По акции про­да­ва­лись 5 чашек, 8 блюд­цев, 7 ложек. Ма­ди­на ку­пи­ла домой ком­плект по­су­ды по акции.

Ма­ди­на ку­пи­ла ком­плект из 5 чашек: 3 из них се­реб­ря­ные, 2 про­стые; 8 блюд­цев: 5 се­реб­ря­ных, 3 про­стых; 7 ложек: 5 се­реб­ря­ных, 2 про­стых. Сколь­ки­ми спо­со­ба­ми Ма­ди­на может вы­брать ком­плект пред­ме­тов, со­сто­я­щих из двух се­реб­ря­ных чашек, трех се­реб­ря­ных блюд­цев и одной про­стой ложки.

1) 70
2) 90
3) 80
4) 60
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = минус 3 в сте­пе­ни x плюс 1. Уста­но­ви­те со­от­вет­ствия:

A) Нуль функ­ции

Б) Мно­же­ство зна­че­ний функ­ции

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 0 пра­вая круг­лая скоб­ка

2) 0

3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 1 пра­вая круг­лая скоб­ка

4) −1

32.  
i

В ци­линдр впи­сан шар, ра­ди­ус ко­то­ро­го равен 6. Уста­но­ви­те со­от­вет­ствие между пло­ща­дью пол­ной по­верх­но­сти ци­лин­дра, объ­е­мом ци­лин­дра и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Пло­щадь пол­ной по­верх­но­сти ци­лин­дра

Б) Объем ци­лин­дра

1) 324π

2) 432π

3) 216π

4) 288π

33.  
i

Най­ди­те два на­ту­раль­ных числа x и y, если из­вест­но, что раз­ность чисел x и 2y равна 10, а про­из­ве­де­ние чисел x и y равно 12.

A) Число x при­над­ле­жит про­ме­жут­ку

Б) Число y при­над­ле­жит про­ме­жут­ку

1) [7; 10)

2) (0; 2]

3) (5; 8)

4) (11; 12]

34.  
i

Даны урав­не­ния  дробь: чис­ли­тель: x минус 4, зна­ме­на­тель: x минус 6 конец дроби = 2 и x в квад­ра­те минус x минус 6=0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) −2, 3, 8

2) −2, 8, 1

3) −3, 5, 1

4) 3, −1, 8

35.  
i

Дана гео­мет­ри­че­ская про­грес­сия (bn), где b3  =  18 и b6  =  486. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем

A) S5

Б) 15 умно­жить на b_2

1) 240

2) 90

3) 30

4) 242

36.  
i

Из пред­ло­жен­ных ва­ри­ан­тов под­бе­ри­те на­ту­раль­ное число х так, чтобы зна­че­ние суммы 758 + х де­ли­лось на 9 без остат­ка.

1) 6
2) 7
3) 16
4) 5
5) 15
6) 14
37.  
i

Зна­че­ние вы­ра­же­ния 7 ко­си­нус в квад­ра­те 34 гра­ду­сов плюс 10 синус 30 гра­ду­сов плюс 7 синус в квад­ра­те 34 гра­ду­сов равно:

1) 12
2) 17
3) 24
4) 7 плюс 10 ко­рень из 3
5) 14 плюс 5 ко­рень из 3
6) 2
38.  
i

Сумма цифр че­ты­рех­знач­но­го числа равна 16 и все цифры числа об­ра­зу­ют ариф­ме­ти­че­скую про­грес­сию. При­чем, цифра еди­ниц на 4 боль­ше цифры сотен. Вы­бе­ри­те вер­ные утвер­жде­ния.

1) по­след­няя цифра чет­ная
2) пер­вые две цифры в сумме боль­ше по­след­ней
3) вто­рая и по­след­няя цифры в сумме дают 10
4) пер­вая цифра не­чет­ная
5) число из по­след­них двух цифр мень­ше 50
6) про­из­ве­де­ние всех цифр мень­ше 105
39.  
i

Ре­ши­те си­сте­му по­ка­за­тель­ных урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка 9 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка =729, новая стро­ка 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка :3 в сте­пе­ни левая круг­лая скоб­ка y плюс 1 пра­вая круг­лая скоб­ка =1. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби .

1) 2
2) 1
3)  ко­рень из 9
4) 4
5) 3
6)  ко­рень из 4
40.  
i

Через два про­ти­во­по­лож­ных ребра куба про­ве­де­но се­че­ние, пло­щадь ко­то­ро­го равна 196 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см2. Най­ди­те ребро куба и его диа­го­наль.

1) 13 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см
2) 16 см
3) 14 см
4) 7 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см
5) 7 см
6) 14 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см