Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 35326
1.  
i

Упро­сти­те чис­ло­вое вы­ра­же­ние  ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 минус ко­рень из: на­ча­ло ар­гу­мен­та: 17 конец ар­гу­мен­та конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 17 конец ар­гу­мен­та конец ар­гу­мен­та .

1) 1
2) 4
3) 0
4) 2
2.  
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: a в квад­ра­те умно­жить на a в сте­пе­ни левая круг­лая скоб­ка минус 9 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка a в сте­пе­ни левая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни 4 конец дроби .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: a в сте­пе­ни 6 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: a в сте­пе­ни 5 конец дроби
3)  a в сте­пе­ни 5
4)  a
3.  
i

Вы­ра­зи­те угол 240° в ра­ди­а­нах.

1)  дробь: чис­ли­тель: 4 Пи , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: 8 Пи , зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби
4.  
i

Раз­ло­жи­те мно­го­член на мно­жи­те­ли: ax минус ay плюс xb минус yb.

1)  левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a минус b пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a минус b пра­вая круг­лая скоб­ка
5.  
i

Ре­ши­те урав­не­ние:  дробь: чис­ли­тель: 9, зна­ме­на­тель: 10 конец дроби y минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1) 3
2) 2
3) 0
4) 1
6.  
i

Ре­ши­те си­сте­му урав­не­ний:

 си­сте­ма вы­ра­же­ний 3x минус 8y = минус 43, 4x плюс y = минус 34. конец си­сте­мы .

1)  левая круг­лая скоб­ка минус 9; 2 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус 8; минус 4 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус 5; 3 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 7; минус 5 пра­вая круг­лая скоб­ка
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t дробь: чис­ли­тель: 2x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус 4x в кубе плюс x плюс 5, зна­ме­на­тель: 3x конец дроби dx.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби левая круг­лая скоб­ка 3x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 8x в кубе плюс 6x плюс 30 на­ту­раль­ный ло­га­рифм x пра­вая круг­лая скоб­ка плюс C
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби левая круг­лая скоб­ка 3x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус 8x в кубе плюс 6x плюс 30 на­ту­раль­ный ло­га­рифм x пра­вая круг­лая скоб­ка плюс C
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби левая круг­лая скоб­ка 3x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 8x в кубе минус 6x плюс 30 на­ту­раль­ный ло­га­рифм x пра­вая круг­лая скоб­ка плюс C
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби левая круг­лая скоб­ка 3x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус 8x в квад­ра­те плюс 6x плюс 30 на­ту­раль­ный ло­га­рифм x пра­вая круг­лая скоб­ка плюс C
8.  
i

Ра­ди­ус ко­ну­са умень­ши­ли в три раза. Во сколь­ко раз умень­шил­ся объем ко­ну­са?

1) в 27 раз
2) в 3 раза
3) в 9 раз
4) в 4 раза
9.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 2x минус 5 мень­ше 4 минус x,7x минус 1 боль­ше или равно 9 плюс 12x конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка 1; минус 2 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус 2; 3 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
10.  
i

Ре­ши­те урав­не­ние  синус в квад­ра­те x минус ко­си­нус в квад­ра­те x= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1) \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс Пи k, k при­над­ле­жит Z
2) нет ре­ше­ний
3) \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи k, k при­над­ле­жит Z
4) \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k, k при­над­ле­жит Z
11.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 левая круг­лая скоб­ка 1 плюс 2x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 10;8 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби x в кубе плюс дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби x в квад­ра­те минус 3x
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби x в кубе минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби x в квад­ра­те минус 3x плюс дробь: чис­ли­тель: 2864, зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби x в кубе плюс дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби x в квад­ра­те минус 3x минус дробь: чис­ли­тель: 2864, зна­ме­на­тель: 3 конец дроби
4)  минус 5x в квад­ра­те минус 6x плюс дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби x в кубе плюс дробь: чис­ли­тель: 5344, зна­ме­на­тель: 3 конец дроби
12.  
i

Pешите не­ра­вен­ство: 7 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 4x боль­ше 3x плюс 16.

1) нет ре­ше­ний
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка минус 4; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 16 пра­вая квад­рат­ная скоб­ка
13.  
i

Точки A(1; 1), B(3; 5) и C(7; 3) со­от­вет­ствен­но вер­ши­ны тре­уголь­ни­ка ABC. Длина ме­ди­а­ны BM равна

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та
3) 3
4) 4
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 3 до 6, дробь: чис­ли­тель: 8x минус 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та конец дроби dx.

1) 5 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 14 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2) 5 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 8 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
3) 5 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 14 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4) 5 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка минус 14 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
15.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де бо­ко­вое ребро равно 4 см, а сто­ро­на ос­но­ва­ния — 6 см. Най­ди­те объём пи­ра­ми­ды.

1) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
2) 7 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
3) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
4) 8 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
16.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 6x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус x конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 14 конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус x конец ар­гу­мен­та .

1) −9
2) −7
3) −5
4) 5
17.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: 3x плюс 1 конец ар­гу­мен­та боль­ше или равно 1, ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 1 конец ар­гу­мен­та мень­ше 3. конец си­сте­мы .

1)  левая круг­лая скоб­ка минус 1; 5 пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 5 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 3 пра­вая круг­лая скоб­ка
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те ,y= минус x минус 2, минус 3 мень­ше или равно x мень­ше или равно 2.

1)  дробь: чис­ли­тель: 115, зна­ме­на­тель: 6 конец дроби
2)  дробь: чис­ли­тель: 117, зна­ме­на­тель: 6 конец дроби
3)  дробь: чис­ли­тель: 111, зна­ме­на­тель: 6 конец дроби
4)  дробь: чис­ли­тель: 115, зна­ме­на­тель: 8 конец дроби
19.  
i

Най­ди­те пло­щадь ромба, если его диа­го­на­ли от­но­сят­ся как 3 : 4, а бо­ко­вая сто­ро­на равна 10.

1) 192
2) 320
3) 100
4) 96
20.  
i

Если сумма с пя­то­го по вось­мой член ариф­ме­ти­че­ской про­грес­сии равна 48, а раз­ность про­грес­сии равна 2, то ее пер­вый член равен

1) 3
2) 2
3) −3
4) 1
21.  
i

Упро­сти­те вы­ра­же­ние:  \overrightarrowMK минус левая круг­лая скоб­ка \overrightarrowDE плюс \overrightarrowFC пра­вая круг­лая скоб­ка минус \overrightarrowBK плюс левая круг­лая скоб­ка \overrightarrowFE плюс \overrightarrowBC пра­вая круг­лая скоб­ка .

1) \overrightarrowFE
2) \overrightarrowKD
3) \overrightarrowMD
4) \overrightarrowDC
22.  
i

Зна­че­ние суммы  дробь: чис­ли­тель: b плюс c, зна­ме­на­тель: 3a конец дроби плюс дробь: чис­ли­тель: b минус 2c, зна­ме­на­тель: a конец дроби равно

1)  дробь: чис­ли­тель: 3 b плюс c, зна­ме­на­тель: 3 a конец дроби
2)  дробь: чис­ли­тель: 3 b плюс 2 c, зна­ме­на­тель: 3 a конец дроби
3)  дробь: чис­ли­тель: 4 b минус c, зна­ме­на­тель: 3 a конец дроби
4)  дробь: чис­ли­тель: 4 b минус 5 c, зна­ме­на­тель: 3 a конец дроби
23.  
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию 3 x плюс ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка = 1.

1) −3
2) −3; 1
3) 1
4) 2
24.  
i

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство  тан­генс x боль­ше 1.

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 синус x минус \operatorname\ctgx,x_0= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби .

1) y = левая круг­лая скоб­ка 2 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та плюс 2 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 1
2) y = 2x минус дробь: чис­ли­тель: Пи левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та плюс 2 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 конец дроби плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 1
3) y = левая круг­лая скоб­ка 2 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та плюс 2 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 конец дроби плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4) y = левая круг­лая скоб­ка 2 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та плюс 2 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 конец дроби плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 1
26.  
i

Алек­сандр из­го­то­ви­ла ко­ну­со­об­раз­ный го­лов­ной убор  — кол­пак (см. рис.).

H  =  15 см, R  =  8 см

Най­ди­те пло­щадь ос­но­ва­ния ко­ну­са, π ≈ 3.

1) 178 см2
2) 196 см2
3) 192 см2
4) 186 см2
27.  
i

Вы­пуск­ной бал

Це­ре­мо­нию вру­че­ния ат­те­ста­тов вы­пуск­ни­кам ре­ши­ли про­ве­сти в го­род­ском парке. По­стро­и­ли две арки в форме по­лу­кру­га с ра­ди­у­са­ми 6 м и 8 м. Сцену, где будет про­хо­дить кон­церт­ная про­грам­ма сде­ла­ли в виде боль­шо­го круга ра­ди­у­сом 5 м. На сцену по­сте­ли­ли ковер в виде рав­но­сто­рон­не­го тре­уголь­ни­ка, сто­ро­ны ко­то­ро­го от­се­ка­ют сег­мен­ты рав­ных пло­ща­дей. По­ми­мо этого ре­ши­ли со­ору­дить стенд, где будут рас­по­ло­же­ны фо­то­гра­фии вы­пуск­ни­ков в форме тра­пе­ции с ос­но­ва­ни­я­ми рав­ны­ми 10 см и 16 см и вы­со­той рав­ной 15 см.

Hай­ди­те пло­щадь, за­ни­ма­е­мой одной тра­пе­ци­е­вид­ной фо­то­гра­фи­ей на стен­де.

1) 195 см2
2) 195 см
3) 300 см2
4) 205 см2
28.  
i

Перед отъ­ез­дом в Япо­нию, Самат при­об­рел для хра­не­ния важ­ных до­ку­мен­тов и цен­ных вещей ко­до­вый сейф с ше­сти­знач­ным кодом, со­сто­я­щим из цифр 1, 2, 3 и букв M, N, K.

Сколь­ко ва­ри­ан­тов воз­мож­ны при усло­вии, что цифра 1 не долж­на быть пер­вой?

1) 120
2) 400
3) 240
4) 600
29.  
i

Вы­пуск­ной бал

Це­ре­мо­нию вру­че­ния ат­те­ста­тов вы­пуск­ни­кам ре­ши­ли про­ве­сти в го­род­ском парке. По­стро­и­ли две арки в форме по­лу­кру­га с ра­ди­у­са­ми 6 м и 8 м. Сцену, где будет про­хо­дить кон­церт­ная про­грам­ма сде­ла­ли в виде боль­шо­го круга ра­ди­у­сом 5 м. На сцену по­сте­ли­ли ковер в виде рав­но­сто­рон­не­го тре­уголь­ни­ка, сто­ро­ны ко­то­ро­го от­се­ка­ют сег­мен­ты рав­ных пло­ща­дей. По­ми­мо этого ре­ши­ли со­ору­дить стенд, где будут рас­по­ло­же­ны фо­то­гра­фии вы­пуск­ни­ков в форме тра­пе­ции с ос­но­ва­ни­я­ми рав­ны­ми 10 см и 16 см и вы­со­той рав­ной 15 см.

Опре­де­ли­те пло­щадь ковра на сцене.

1)  дробь: чис­ли­тель: 15 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби м в квад­ра­те
2)  дробь: чис­ли­тель: 25 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби м в квад­ра­те
3)  дробь: чис­ли­тель: 15 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби м в квад­ра­те
4)  дробь: чис­ли­тель: 75 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби м в квад­ра­те
30.  
i

Hа столе лежат кар­точ­ки, на ко­то­рых за­пи­са­ны числа 1; 2; 3; 4; 5. Марат на­у­гад взял три из них.

Kакова ве­ро­ят­ность, что Марат смо­жет по­стро­ить тре­уголь­ник, сто­ро­ны ко­то­ро­го равны чис­лам, за­пи­сан­ным на вы­тя­ну­тых им кар­точ­ках?

1) 0,7
2) 0,3
3) 0,1
4) 0,6
31.  
i

Квад­ра­тич­ная функ­ция за­да­на урав­не­ни­ем y = левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те минус 1. Уста­но­ви­те со­от­вет­ствие между ну­ля­ми функ­ции и ко­ор­ди­на­та­ми вер­ши­ны па­ра­бо­лы.

A)  Нули функ­ции

Б)  Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1)  (2; −1)

2)  {3; 2}

3)  {–3; −1}

4)  (−2; −1)

32.  
i

В пря­мо­уголь­ный па­рал­ле­ле­пи­пед впи­сан шар, ра­ди­ус ко­то­ро­го равен 4. Уста­но­ви­те со­от­вет­ствие между объ­е­мом па­рал­ле­ле­пи­пе­да, пло­ща­дью его по­верх­но­сти и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Объем па­рал­ле­ле­пи­пе­да

Б) Пло­щадь по­верх­но­сти па­рал­ле­ле­пи­пе­да

1) 484

2) 384

3) 480

4) 512

33.  
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 6x плюс 9 конец ар­гу­мен­та , если из­вест­но, что x боль­ше 3. Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x2, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x2

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) (−20; −15]

2) (−10; −3)

3) [1; 2)

4) (3; 8)

34.  
i

При по­мо­щи гра­фи­ка функ­ции y = ||x плюс 3| минус 4| вы­яс­ни­те, сколь­ко ре­ше­ний имеет урав­не­ние ||x плюс 3| минус 4| = a в за­ви­си­мо­сти от зна­че­ний па­ра­мет­ра a. Уста­но­ви­те со­от­вет­ствие между зна­че­ни­я­ми па­ра­мет­ра a и ко­ли­че­ством ре­ше­ний урав­не­ния

A) a боль­ше 4

Б) 0 мень­ше a мень­ше 4

1) 2

2) 1

3) 4

4) 0

35.  
i

Гео­мет­ри­че­ская про­грес­сия за­да­ет­ся фор­му­лой  b_n =160 умно­жить на 3 в сте­пе­ни n . Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b1

Б) S4

1) 240

2) 9 600

3) 19 200

4) 480

36.  
i

Pас­сто­я­ние на плане между двумя точ­ка­ми 2,3 см. Вы­чис­ли­те со­от­вет­ству­ю­щее рас­сто­я­ние в дей­стви­тель­но­сти, если

Mас­штаб плана равен 1 : 1 000 000.

1) 230 км
2) 23 км
3) 230 км
4) 0,23 км
5) 23 м
6) 23 000 м
37.  
i

Зна­че­ние вы­ра­же­ния 8 синус в квад­ра­те дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби минус 4 равно

1) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
2) 4
3) 2
4)  минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
5)  минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
6) 1
38.  
i

Eсли в ариф­ме­ти­че­ской про­грес­сии {an}, a7 = 21, S7 = 105, то най­ди­те d, a1, a5.

1) 13
2) 11
3) 9
4) 3
5) 2
6) 17
39.  
i

Ре­ши­те си­сте­му урав­не­ний:

 си­сте­ма вы­ра­же­ний новая стро­ка x плюс y=1, новая стро­ка x в кубе минус 2y=10. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: y, зна­ме­на­тель: x конец дроби .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3) −2
4)  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 6 конец дроби
5) 4
6)  минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 4 конец дроби
40.  
i

В пра­виль­ной ше­сти­уголь­ной пи­ра­ми­де SABCDEF с вер­ши­ной S сто­ро­на ос­но­ва­ния равна  ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , а бо­ко­вое ребро равно 2 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та . Най­ди­те угол между реб­ра­ми AS и SD.

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
3) 60°
4) 45°
5) 90°
6)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби