Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 25353
1.  
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: ко­рень из: на­ча­ло ар­гу­мен­та: 28 минус 16 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та конец ар­гу­мен­та конец ар­гу­мен­та .

1) 2 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус 1
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та плюс 1
4) 2 минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

Пред­ставь­те в виде дроби вы­ра­же­ние  дробь: чис­ли­тель: 10x, зна­ме­на­тель: 2x минус 3 конец дроби минус 5x   и най­ди­те его зна­че­ние при x=0,5.

1) −5
2) −10
3) 2
4) 5
3.  
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: ко­си­нус 50 гра­ду­сов плюс синус в квад­ра­те 25 гра­ду­сов , зна­ме­на­тель: ко­си­нус в квад­ра­те 25 гра­ду­сов конец дроби плюс 1.

1)  синус 25 гра­ду­сов плюс 1
2)  ко­си­нус 25 гра­ду­сов
3) 0
4) 2
4.  
i

Ука­жи­те вер­ное раз­ло­же­ние на мно­жи­те­ли мно­го­чле­на 2ab плюс 5a в квад­ра­те плюс 2b плюс 5a.

1)  левая круг­лая скоб­ка a плюс 5b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс 1 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 5a плюс 2b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс 1 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 5a плюс 2b в квад­ра­те
4)  левая круг­лая скоб­ка 5a плюс b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс 1 пра­вая круг­лая скоб­ка
5.  
i

Ре­ши­те урав­не­ние 2 левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка минус 3= минус 3 левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка плюс 2.

1) 3
2) 2
3) 1,2
4) 2,4
6.  
i

Ре­ши­те си­сте­му урав­не­ний  си­сте­ма вы­ра­же­ний 3x минус 2y = 4,5x плюс 2y = 20 конец си­сте­мы .

1)  левая круг­лая скоб­ка минус 3; минус 2,5 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 2,5; 3 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 3; 2,5 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 3; минус 2,5 пра­вая круг­лая скоб­ка
7.  
i

Най­ди­те ин­те­грал:  при­над­ле­жит t дробь: чис­ли­тель: 1, зна­ме­на­тель: x плюс 2 конец дроби dx .

1) \ln|x минус 2| плюс C
2) \ln|x плюс 2| плюс C
3) \ln|x| плюс C
4) \ln левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка плюс C
8.  
i

Усе­чен­ный конус, у ко­то­ро­го ра­ди­у­сы ос­но­ва­ний равны 7 и 8, и пол­ный конус такой же вы­со­ты рав­но­ве­ли­ки. Най­ди­те ра­ди­ус ос­но­ва­ния пол­но­го ко­ну­са.

1) 13
2) 10
3) 12
4) 15
9.  
i

Ре­ши­те си­сте­му не­ра­венств  си­сте­ма вы­ра­же­ний x в квад­ра­те боль­ше или равно 2,25, левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 1. конец си­сте­мы .

1) (−3; −1]
2) [−3; −1,5)
3) [−1; 1,5]
4) [−3; −1,5]
10.  
i

Ре­ши­те урав­не­ние:  ко­си­нус 5x плюс ко­си­нус 3x = 0

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс 2 Пи n; Пи плюс 2 Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи n; Пи плюс 2 Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
4) \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс 2 Пи n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
11.  
i

Най­ди­те зна­че­ние про­из­вод­ной функ­ции x в квад­ра­те плюс x в точке x  =  1.

1) −1
2) 1
3) 3
4) 2
12.  
i

Ре­ши­те не­ра­вен­ство: \left|x в квад­ра­те плюс 6 x| мень­ше или равно 0.

1) {−6; 0}
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 6 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 6 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4) {−6; 1}
13.  
i

Ко­си­нус боль­ше­го угла тре­уголь­ни­ка со сто­ро­на­ми 13 см, 14 см, 15 см равен?

1)  дробь: чис­ли­тель: 13, зна­ме­на­тель: 15 конец дроби
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 15 конец дроби
3)  дробь: чис­ли­тель: 14, зна­ме­на­тель: 15 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 13 конец дроби
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 1 до 2, левая круг­лая скоб­ка 2x плюс 3x в квад­ра­те пра­вая круг­лая скоб­ка dx.

1) 12
2) 6
3) 10
4) 8
15.  
i

Най­ди­те объем пра­виль­ной усе­чен­ной че­ты­рех­уголь­ной пи­ра­ми­ды, сто­ро­ны ос­но­ва­ния ко­то­рой равны 9 см и 25 см, а вы­со­та 18 см.

1) 4308 см3
2) 5586 см3
3) 5896 см3
4) 3888 см3
16.  
i

Про­из­ве­де­ние кор­ней урав­не­ния 1,5 в сте­пе­ни левая круг­лая скоб­ка 2 x в квад­ра­те плюс 1 пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка дробь: чис­ли­тель: 8, зна­ме­на­тель: 27 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
17.  
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 5 в сте­пе­ни x плюс левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x боль­ше 2,2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка мень­ше или равно 64 умно­жить на 2 в сте­пе­ни x . конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка минус 2; 0 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0; 3 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка минус 1; 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1; плюс бес­ко­неч­ность пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 3 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка минус 1; 1 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс x плюс 7,y= минус 3x плюс 3, минус 5 мень­ше или равно x мень­ше или равно 1.

1) 21
2) 18
3) 24
4) 10
19.  
i

Тра­пе­ция впи­са­на в окруж­ность так, что её боль­шее ос­но­ва­ние сов­па­да­ет с диа­мет­ром, а бо­ко­вая сто­ро­на равна ра­ди­у­су окруж­но­сти. Мень­ший угол тра­пе­ции равен?

1) 70°
2) 45°
3) 55°
4) 60°
20.  
i

В ариф­ме­ти­че­ской про­грес­сии сумма a_4 плюс a_6 = 20. Най­ди­те пятый член дан­ной про­грес­сии.

1) 15
2) 14
3) 10
4) 18
21.  
i

Най­ди­те |\veca плюс \vecb|:

1) 4
2) 6
3) 5
4) 3
22.  
i

Зна­че­ние част­но­го

 дробь: чис­ли­тель: a в квад­ра­те плюс a минус 6, зна­ме­на­тель: 2 a в квад­ра­те плюс 5 a минус 3 конец дроби : дробь: чис­ли­тель: 3 a в квад­ра­те минус 5 a минус 2, зна­ме­на­тель: 2 a в квад­ра­те плюс a минус 1 конец дроби

равно

1)  дробь: чис­ли­тель: a плюс 1, зна­ме­на­тель: 3a плюс 1 конец дроби
2)  дробь: чис­ли­тель: 3a плюс 1, зна­ме­на­тель: a минус 1 конец дроби
3)  дробь: чис­ли­тель: 3a плюс 1, зна­ме­на­тель: a плюс 1 конец дроби
4)  дробь: чис­ли­тель: a минус 1, зна­ме­на­тель: 3a плюс 1 конец дроби
23.  
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: 2 минус ло­га­рифм по ос­но­ва­нию 2 x конец ар­гу­мен­та = ло­га­рифм по ос­но­ва­нию 2 x.

1) 2
2) 4
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
24.  
i

Ре­ши­те не­ра­вен­ство  ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 3 конец ар­гу­мен­та боль­ше или равно ко­рень из: на­ча­ло ар­гу­мен­та: 4x минус 1 конец ар­гу­мен­та .

1)  левая квад­рат­ная скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2) нет ре­ше­ний
3)  левая квад­рат­ная скоб­ка 1;2 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;2 пра­вая квад­рат­ная скоб­ка
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 2, зна­ме­на­тель: 5x плюс 1 конец дроби ,x_0=4.

1) y = минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 441 конец дроби x плюс дробь: чис­ли­тель: 82, зна­ме­на­тель: 441 конец дроби
2) y = дробь: чис­ли­тель: 10, зна­ме­на­тель: 441 конец дроби x минус дробь: чис­ли­тель: 82, зна­ме­на­тель: 441 конец дроби
3) y = минус дробь: чис­ли­тель: 10, зна­ме­на­тель: 441 конец дроби x минус дробь: чис­ли­тель: 82, зна­ме­на­тель: 441 конец дроби
4) y = минус дробь: чис­ли­тель: 10, зна­ме­на­тель: 441 конец дроби x плюс дробь: чис­ли­тель: 82, зна­ме­на­тель: 441 конец дроби
26.  
i

Цир­ко­вой шатер имеет форму ци­лин­дра с по­став­лен­ным на него усе­чен­ным ко­ну­сом. Диа­метр ос­но­ва­ния ци­лин­дра равен 5 м, диа­метр верх­не­го ос­но­ва­ния усе­чен­но­го ко­ну­са равен 1 м. Вы­со­ты ци­лин­дра и усе­чен­но­го ко­ну­са равны 2 м.

Вы­со­та шатра равна:

1) 4 м
2) 3 м
3) 2 м
4) 6 м
27.  
i

Стро­и­тель­ной ком­па­нии дали за­да­ние по­стро­ить дет­скую иг­ро­вую пло­щад­ку, в ко­то­рой дол­жен быть домик в виде башни. Ко­ни­че­ская крыша башни имеет диа­метр 6 м и вы­со­ту 2 м. Для этого ку­пи­ли листы кро­вель­но­го же­ле­за раз­ме­ра­ми 0,7 м × 1,4 м. На швы и об­рез­ки тра­тит­ся 10 % от пло­ща­ди крыши.

Чему равна пло­щадь по­верх­но­сти башни?

1) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та Пи м2
2) 12 Пи м2
3) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та Пи м2
4) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та Пи м2
28.  
i

Mишень в тире раз­де­ле­на на три сек­то­ра раз­но­го цвета: го­лу­бой, крас­ный и жел­тый. Два стрел­ка, стре­ляя по ми­ше­ни, все­гда по­ра­жа­ют один из сек­то­ров. Ве­ро­ят­ность по­па­да­ния пер­во­го стрел­ка в крас­ную часть ми­ше­ни равна 0,45, а в го­лу­бую — 0,35. Ве­ро­ят­ность по­па­да­ния в жел­тую часть ми­ше­ни вто­ро­го стрел­ка равна 0,7.

Hай­ди­те ве­ро­ят­ность того, что пер­вый стре­лок по­ра­зил жел­тую часть ми­ше­ни, а вто­рой стре­лок не попал в жел­тую часть ми­ше­ни.

1) 0,05
2) 0,6
3) 0,06
4) 0,08
29.  
i

Стро­и­тель­ной ком­па­нии дали за­да­ние по­стро­ить дет­скую иг­ро­вую пло­щад­ку, в ко­то­рой дол­жен быть домик в виде башни. Ко­ни­че­ская крыша башни имеет диа­метр 6 м и вы­со­ту 2 м. Для этого ку­пи­ли листы кро­вель­но­го же­ле­за раз­ме­ра­ми 0,7 м × 1,4 м. На швы и об­рез­ки тра­тит­ся 10 % от пло­ща­ди крыши.

Какое ко­ли­че­ство ли­стов по­на­до­бит­ся для башни?

1) 34
2) 30
3) 32
4) 38
30.  
i

Hа ри­сун­ке изоб­ра­жен ого­род тра­пе­ци­е­вид­ной формы за­се­ян­ный ово­ща­ми (верх­нее ос­но­ва­ние тра­пе­ции равно 180 м, ниж­нее ос­но­ва­ние равно 260 м, вы­со­та равна 200 м) и до­ро­га в виде па­рал­ле­ло­грам­ма ши­ри­ной 5 м, про­хо­дя­щая через ого­род.

Hапи­ши­те фор­му­лу вы­чис­ле­ния общей пло­ща­ди ого­ро­да S (x) вклю­чая до­ро­гу, если в целях рас­ши­ре­ния ого­ро­да все его раз­ме­ры уве­ли­чи­ли на х мет­ров.

1) S левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в квад­ра­те плюс 420x плюс 44000
2) S левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в квад­ра­те плюс 420x минус 44000
3) S левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в квад­ра­те плюс 420x плюс 54000
4) S левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в квад­ра­те плюс 440x плюс 164000
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 4x минус 5 конец ар­гу­мен­та . Уста­но­ви­те со­от­вет­ствия:

A) Об­ласть опре­де­ле­ния функ­ции

Б) Нули функ­ции

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

2) {−5; 1}

3) {−1; 5}

4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

32.  
i

Пло­щадь диа­мет­раль­но­го се­че­ния шара равна 3. Уста­но­ви­те со­от­вет­ствие между ра­ди­у­сом шара, пло­ща­дью его по­верх­но­сти и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Ра­ди­ус шара

Б) Пло­щадь по­верх­но­сти шара

1) (3; 5)

2) [10; 14)

3) (0; 1]

4) (7; 10)

33.  
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в сте­пе­ни 4 . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x3, ко­эф­фи­ци­ен­том при x и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x3

Б) Ко­эф­фи­ци­ент при x

1) (−8; 1)

2) (−10; −7)

3) (−40; −30)

4) (10; 21)

34.  
i

Даны урав­не­ния  левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка =3 и  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 4x минус 1 конец ар­гу­мен­та = 2 ко­рень из: на­ча­ло ар­гу­мен­та: минус x конец ар­гу­мен­та . Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 1, 4, −1

2) −1, 0, 4

3) 1, 4, 2

4) 1, −2, 2

35.  
i

Дана гео­мет­ри­че­ская про­грес­сия (bn), зна­ме­на­тель ко­то­рой равен 2 и  b_1 = минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби . Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) S6

Б) b6 − b3

1) −21

2) −54

3) −47,25

4) 2

36.  
i

Ука­жи­те про­ме­жут­ки, со­дер­жа­щие зна­че­ние вы­ра­же­ния 1 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

1) (2; 2,9)
2) (2,7; 2,8)
3) (1,5; 2)
4) (2,5; 2,6)
5) (1,2; 1,6)
6) (2,5; 2,8)
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус 12 гра­ду­сов ко­си­нус 18 гра­ду­сов плюс ко­си­нус 12 гра­ду­сов синус 18 гра­ду­сов .

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2) 0
3) 1
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
5)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
6) 2
38.  
i

Cумма трех дан­ных чисел, со­став­ля­ю­щих ариф­ме­ти­че­скую про­грес­сию, у ко­то­рой раз­ность боль­ше нуля, равна 15. Если к этим чис­лам при­ба­вить со­от­вет­ствен­но 1, 4 и 19, то по­лу­чен­ные числа со­став­ля­ют пер­вые три члена гео­мет­ри­че­ской про­грес­сии. Дан­ные три числа равны:

1) 5
2) 8
3) 11
4) 14
5) 2
6) 7
39.  
i

Ре­ши­те си­сте­му, со­дер­жа­щую ир­ра­ци­о­наль­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка 2x плюс y=2, новая стро­ка 2 левая круг­лая скоб­ка y минус 1 пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 10x конец ар­гу­мен­та в квад­ра­те минус xy минус 2y в квад­ра­те . конец си­сте­мы .

В от­ве­те за­пи­ши­те зна­че­ние вы­ра­же­ния 2x плюс y.
1) 2
2) 3
3)  ко­рень из 4
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби
5) −1
6) 0
40.  
i

В сфере, пло­щадь по­верх­но­сти ко­то­рой равна 7500 см2 (π ≈ 3), на рас­сто­я­нии OO1 от ее цен­тра про­ве­де­но се­че­ние. Вы­бе­ри­те из пред­став­лен­ных чисел те, ко­то­рые яв­ля­ют­ся де­ли­те­ля­ми зна­че­ния пло­ща­ди про­ве­ден­но­го се­че­ния.

1) 9
2) 15
3) 10
4) 5
5) 3
6) 2