Вариант № 2474

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Тип Д36 A36 № 3309
i

Два числа от­но­сят­ся как 7 : 8, а их сумма равна 180. Най­ди­те мень­шее из дан­ных чисел.



2
Тип Д37 A37 № 4042
i

Най­ди­те z, если \mathfrak Im z=3, z=x в сте­пе­ни левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка плюс 4 плюс левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка минус 9 пра­вая круг­лая скоб­ка i.



3
Тип 1 № 2062
i

Cокра­ти­те дробь:  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 70 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 30 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 35 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та конец дроби .



4
Тип 3 № 2621
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус 54 гра­ду­сов умно­жить на синус 18 гра­ду­сов .



5
Тип 1 № 3208
i

За­пи­ши­те в виде обык­но­вен­ной дроби бес­ко­неч­ную пе­ри­о­ди­че­скую де­ся­тич­ную дробь 21,00(12).



6
Тип 12 № 2086
i

Из ниже пред­ло­жен­ных ва­ри­ан­тов чисел ука­жи­те число, ко­то­рое яв­ля­ет­ся ре­ше­ни­ем не­ра­вен­ства:  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка конец дроби боль­ше или равно 0.



7
Тип 6 № 2608
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 16 минус 2x плюс 3 левая круг­лая скоб­ка y плюс 4 пра­вая круг­лая скоб­ка = 17,2 левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка минус 2 левая круг­лая скоб­ка y минус 5 пра­вая круг­лая скоб­ка минус 44 = 0. конец си­сте­мы .



8
Тип Д38 A38 № 3910
i

Вы­чис­ли­те: \lim_x arrow 2 дробь: чис­ли­тель: тан­генс левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 x минус 8 конец дроби .



9
Тип 19 № 2165
i

Сто­ро­на ромба равна 12. Ко­си­нус од­но­го из его углов равен  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби . Пло­щадь ромба равна



10
Тип 15 № 2720
i

Най­ди­те объём куба, если пло­щадь его пол­ной по­верх­но­сти равна 72 см2.



11
Тип 10 № 3211
i

Из пред­ло­жен­ных ниже ва­ри­ан­тов най­ди­те серию, со­дер­жа­щую все ре­ше­ния урав­не­ния  синус 3 x плюс ко­си­нус 3 x=0.



12
Тип 9 № 2226
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 2x минус 1, зна­ме­на­тель: x конец дроби мень­ше 0, дробь: чис­ли­тель: 3x плюс 5, зна­ме­на­тель: x минус 2 конец дроби мень­ше или равно 0. конец си­сте­мы .



13
Тип 18 № 2164
i

Вы­чис­ли­те объем фи­гу­ры, по­лу­ча­е­мой вра­ще­ни­ем во­круг оси Ox дуги кри­вой y = ко­си­нус x, x при­над­ле­жит левая квад­рат­ная скоб­ка 0; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .



14
Тип Д39 A39 № 4249
i

Сколь­ко су­ще­ству­ет се­ми­знач­ных те­ле­фон­ных но­ме­ров с не­по­вто­ря­ю­щи­ми­ся циф­ра­ми и не на­чи­на­ю­щих­ся с нуля?



15
Тип Д40 A40 № 3384
i

В окруж­но­сти с цен­тром O по­стро­е­ны две рав­ные хорды AB и AC. Угол ABC равен 20. Угол BOC равен



16
Тип Д41 A41 № 3216
i

Па­ра­мет­ри­че­ские урав­не­ния пря­мой, про­хо­дя­щей через точки A1(−2; 1; −3) и A2(4; 5; 6), имеют вид:



17
Тип 23 № 3217
i

Ре­ши­те урав­не­ние x в сте­пе­ни левая круг­лая скоб­ка 3 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 81 конец дроби .



18
Тип 17 № 3451
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка мень­ше дробь: чис­ли­тель: 3, зна­ме­на­тель: 9 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби пра­вая круг­лая скоб­ка конец дроби , 6 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка боль­ше 2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка . конец си­сте­мы .



19
Тип 11 № 4199
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 3x в кубе плюс 2x в квад­ра­те , зна­ме­на­тель: x в квад­ра­те конец дроби , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 1;3 пра­вая круг­лая скоб­ка .



20
Тип 8 № 2520
i

В рав­но­сто­рон­ний конус впи­сан шар. Най­ди­те пло­щадь по­верх­но­сти шара, если об­ра­зу­ю­щая ко­ну­са равна 6 см.

(При­ме­ча­ние Решу ЕНТ: ви­ди­мо, рав­но­сто­рон­ним ко­ну­сом со­ста­ви­те­ли за­да­ния на­зы­ва­ют такой, у ко­то­ро­го осе­вое се­че­ние — рав­но­сто­рон­ний тре­уголь­ник.)



21
Тип 26 № 2801
i
Развернуть

Чтобы раз­ре­зать торт про­ве­ли пять диа­мет­ров и по­лу­чи­ли?



22
Тип 27 № 2802
i
Развернуть

Най­ди­те объём всего торта  левая круг­лая скоб­ка Пи \approx 3 пра­вая круг­лая скоб­ка .



23
Тип 28 № 2803
i
Развернуть

Для упа­ков­ки тор­тов фаб­ри­ка из­го­тав­ли­ва­ет ко­роб­ки в виде пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да. Для дан­но­го торта нужно из­го­то­вить ко­роб­ку объём ко­то­рой равен?



24
Тип 29 № 2804
i
Развернуть

Торт раз­делён ше­стью диа­мет­ра­ми на ку­соч­ки рав­ной ве­ли­чи­ны. Най­ди­те массу каж­до­го ку­соч­ка, если сред­няя плот­ность торта 0,4 г/см3.



25
Тип 30 № 2805
i
Развернуть

Если  дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби часть торта по­ме­стить в пря­мо­уголь­ный кон­тей­нер раз­ме­ра­ми 12 см × 10 см × 10 см. Какой объём кон­тей­не­ра ока­жет­ся не­за­пол­нен­ным?



26
Тип 36 № 3541
i

Из ни­же­пе­ре­чис­лен­ных от­ве­тов ука­жи­те те, 35% ко­то­рых яв­ля­ют­ся целым чис­лом.



27
Тип Д42 A42 № 4397
i

Ре­ши­те урав­не­ние  синус левая круг­лая скоб­ка Пи левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка =0.



28
Тип Д43 A43 № 3634
i

Вы­не­си­те мно­жи­те­ли из-под знака корня в вы­ра­же­нии  минус 3 ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 0,0256 x в сте­пе­ни левая круг­лая скоб­ка 12 конец ар­гу­мен­та y в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка , при  x мень­ше 0 и  y боль­ше 0.



29
Тип Д44 A44 № 2042
i

Най­ди­те про­из­вод­ную функ­ции: y = дробь: чис­ли­тель: 2x плюс 1, зна­ме­на­тель: x в квад­ра­те конец дроби .



30
Тип Д45 A45 № 6874
i

Век­тор \overrightarrowAB с кон­цом в точке B(–4; –1) имеет ко­ор­ди­на­ты (–5; 8). Най­ди­те ко­ор­ди­на­ты точки A.



31
Тип Д46 A46 № 4064
i

Вы­чис­ли­те  дробь: чис­ли­тель: 2, зна­ме­на­тель: 1 плюс i конец дроби плюс дробь: чис­ли­тель: 25, зна­ме­на­тель: 3 минус 4i конец дроби .



32
Тип Д47 A47 № 2076
i

Ука­жи­те об­рат­ную функ­цию для функ­ции: y = 5 в сте­пе­ни левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка минус 1.



33
Тип Д48 A48 № 3128
i

Най­ди­те мень­шую вы­со­ту и пло­щадь тре­уголь­ни­ка со сто­ро­на­ми 9 см, 12 см и 15 см.



34
Тип 38 № 3870
i

Сумма цифр че­ты­рех­знач­но­го числа равна 16 и все цифры числа об­ра­зу­ют ариф­ме­ти­че­скую про­грес­сию. При­чем, цифра еди­ниц на 4 боль­ше цифры сотен. Вы­бе­ри­те вер­ные утвер­жде­ния.



35
Тип 40 № 3410
i

Дано: SABCD пи­ра­ми­да, SO — вы­со­та, ABCD — тра­пе­ция, AB = 9, CD = 4, AD = BC, O — центр впи­сан­ной окруж­но­сти, \angle SEO = 45 гра­ду­сов . Вы­чис­ли­те пло­щадь пол­ной по­верх­но­сти пи­ра­ми­ды.


Завершить работу, свериться с ответами, увидеть решения.