Заголовок:
Комментарий:
Готово, можно копировать.
РЕШУ ЕНТ — математика
Вариант № 20980
1.  
i

Вы­пол­ни­те дей­ствия с ра­ди­ка­ла­ми Broken TeX

1) Broken TeX
2) 1
3) 2
4) 0
1) 1
2) 4
3) 2
4) 1,2
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния Broken TeX

1) −1,5
2) 0,5
3) Broken TeX
4) Broken TeX
4.  
i

При­ве­ди­те од­но­член Broken TeX к стан­дарт­но­му виду.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
5.  
i

Чис­ли­тель дроби на 4 мень­ше ее зна­ме­на­те­ля. Если эту дробь сло­жить с об­рат­ной ей дро­бью, то по­лу­чит­ся число Broken TeX Най­ди­те ис­ход­ную дробь.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
6.  
i

Ре­ши­те си­сте­му урав­не­ний: Broken TeX

1) (55; 33)
2) (−5; 3)
3) (5; 3)
4) (−55; 33)
7.  
i

Най­ди­те не­опре­делённый ин­те­грал Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
8.  
i

Усе­чен­ный конус, у ко­то­ро­го ра­ди­у­сы ос­но­ва­ний равны 7 и 8, и пол­ный конус такой же вы­со­ты рав­но­ве­ли­ки. Най­ди­те ра­ди­ус ос­но­ва­ния пол­но­го ко­ну­са.

1) 13
2) 10
3) 12
4) 15
9.  
i

Pешите си­сте­му не­ра­венств: Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
10.  
i

Ре­ши­те урав­не­ние Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
11.  
i

Из ниже пе­ре­чис­лен­ных от­ве­тов, ука­жи­те одну из пер­во­об­раз­ных для функ­ции Broken TeX при Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
12.  
i

Oпре­де­ли­те длину про­ме­жут­ка, со­от­вет­ству­ю­ще­го ре­ше­нию не­ра­вен­ства: Broken TeX

1) 3
2) 2
3) 5
4) 4
13.  
i

В тре­уголь­ни­ке ACB AC  =  6, MN  =  4, AB  =  4,8, MN || AB. Най­ди­те MC.

1) 4
2) 5
3) 2
4) 3
14.  
i

Вы­чис­ли­те Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
15.  
i

Най­ди­те вы­со­ту пи­ра­ми­ды, каж­дое бо­ко­вое ребро ко­то­рой равно 10 см и в ос­но­ва­нии квад­рат со сто­ро­ной Broken TeX см.

1) Broken TeX см.
2) 8 см
3) 6 см
4) Broken TeX см.
16.  
i

Ре­ши­те урав­не­ние Broken TeX

1) Broken TeX
2) Broken TeX
3) 0
4) −1
17.  
i

Ре­ши­те си­сте­му урав­не­ний Broken TeX

1) (1; −3)
2) (3; 2)
3) (1; 3)
4) (3; −2)
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
19.  
i

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции ABCD равны 24 и 16, а ост­рый угол равен 45°. Най­ди­те пло­щадь тра­пе­ции.

1) 72
2) 120
3) 80
4) 94
20.  
i

В ариф­ме­ти­че­ской про­грес­сии a1 = −2, d = 16, най­ди­те номер члена ариф­ме­ти­че­ской про­грес­сии, рав­но­го 174.

1) 15
2) 14
3) 12
4) 13
21.  
i

Най­ди­те Broken TeX

1) 27
2) 26
3) 24
4) 25
22.  
i

Broken TeX равен?

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
23.  
i

Ре­ши­те урав­не­ние Broken TeX

1) 6
2) 3
3) 2
4) −6
24.  
i

Ре­ши­те не­ра­вен­ство Broken TeX

1) [−2; −1]
2) (−2; −1)
3) Broken TeX
4) Broken TeX
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции Broken TeX в точке с абс­цис­сой Broken TeX если Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
26.  
i

Бро­са­ют од­но­вре­мен­но два иг­раль­ных ку­би­ка, на гра­нях ко­то­рых рас­по­ло­же­ны числа от 1 до 6.

Ко­ли­че­ство спо­со­бов вы­па­де­ния чет­но­го числа равна

1) 3
2) 9
3) 6
4) 4
27.  
i

Бро­са­ют од­но­вре­мен­но два иг­раль­ных ку­би­ка, на гра­нях ко­то­рых рас­по­ло­же­ны числа от 1 до 6.

Ко­ли­че­ство спо­со­бов вы­па­де­ния не­чет­но­го числа равна

1) 3
2) 2
3) 6
4) 9
28.  
i

Бро­са­ют од­но­вре­мен­но два иг­раль­ных ку­би­ка, на гра­нях ко­то­рых рас­по­ло­же­ны числа от 1 до 6.

Сколь­ки­ми спо­со­ба­ми может вы­пасть в сумме число 5?

1) 3
2) 6
3) 9
4) 4
29.  
i

Для из­го­тов­ле­ния сталь­ных ди­зай­нер­ских шаров, завод по­лу­чил за­го­тов­ки в виде куба. Про­грамм­ная уста­нов­ка для об­та­чи­ва­ния де­та­лей тре­бу­ет ввода ко­ор­ди­нат за­го­тов­ки в трёхмер­ном про­стран­стве. Про­грам­мист вво­дит си­сте­му ко­ор­ди­нат в вер­ши­ну куба как по­ка­за­но на ри­сун­ке.

Опре­де­ли­те ко­ор­ди­на­ты цен­тра шара впи­сан­но­го в дан­ный куб.

1) (2; 2; 2)
2) (2; 0; 2)
3) (2; 0; 0)
4) (0; 2; 0)
30.  
i

Бро­са­ют од­но­вре­мен­но два иг­раль­ных ку­би­ка, на гра­нях ко­то­рых рас­по­ло­же­ны числа от 1 до 6.

Ка­ко­ва ве­ро­ят­ность того, что сумма чисел на двух иг­раль­ных ку­би­ках будет чет­ным чис­лом.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
31.  
i

Функ­ция за­да­на урав­не­ни­ем Broken TeX Уста­но­ви­те со­от­вет­ствие между наи­боль­шим и наи­мень­шим зна­че­ни­я­ми функ­ции и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Наи­боль­шее зна­че­ние функ­ции

Б) Наи­мень­шее зна­че­ние функ­ции

1) −3

2) −5

3) −1

4) 3

32.  
i

Ци­линдр, осе­вым се­че­ни­ем ко­то­ро­го яв­ля­ет­ся квад­рат, впи­сан в шар, ра­ди­ус ко­то­ро­го равен 4. Уста­но­ви­те со­от­вет­ствие между вы­со­той ци­лин­дра, его объ­е­мом и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Вы­со­та ци­лин­дра

Б) Объем ци­лин­дра

1) [176; 188)

2) (3; 5)

3) (5; 6)

4) (158; 161]

33.  
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние Broken TeX Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) [2; 3)

2) (1; 3)

3) (7; 8]

4) [3; 4)

34.  
i

Даны урав­не­ния Broken TeX и Broken TeX Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) −9, 3, 1

2) −1, 0, 2

3) −9, 4, 1

4) 7, 8, 9

35.  
i

Вы­пи­са­но не­сколь­ко пер­вых чле­нов гео­мет­ри­че­ской про­грес­сии: −1024; −256; −64; … Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b5

Б) S5

1) 4

2) −4

3) −1362

4) −1364

36.  
i

Зна­че­ние вы­ра­же­ния Broken TeX равно:

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
5) Broken TeX
6) Broken TeX
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния Broken TeX

1) 18
2) 32
3) –9
4) –18
5) 9
6) –32
38.  
i

Най­ди­те все зна­че­ния х, при ко­то­рых числа Broken TeX рас­по­ло­жен­ные в каком-либо по­ряд­ке, об­ра­зу­ют ариф­ме­ти­че­скую про­грес­сию, раз­ность ко­то­рой боль­ше 1.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
5) Broken TeX
6) Broken TeX
39.  
i

Ре­ши­те си­сте­му, при­во­ди­мую к со­дер­жа­щей од­но­род­ное урав­не­ние

Broken TeX

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния Broken TeX

1) Broken TeX
2) Broken TeX
3) 0
4) Broken TeX
5) Broken TeX
6) 3
40.  
i

В пра­виль­ной тре­уголь­ной приз­ме все ребра равны 1. Точка K — се­ре­ди­на ребра AC. Най­ди­те ко­ор­ди­на­ты век­то­ров Broken TeX и Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
5) Broken TeX
6) Broken TeX