Готово, можно копировать.
РЕШУ ЕНТ — математика
Задания для подготовки
1.  
i

В пря­мой пра­виль­ной ше­сти­уголь­ной приз­ме ABCDEFA1B1C1D1E1F1 имеем Broken TeX и Broken TeX Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти и пло­щадь пол­ной по­верх­но­сти дан­ной приз­мы.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
5) Broken TeX
6) Broken TeX
2.  
i

Вы­бе­ри­те из ни­же­пе­ре­чис­лен­ных от­ве­тов де­ли­те­ли числа, рав­но­го зна­че­нию пло­ща­ди бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы, опи­сан­ной около ци­лин­дра, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен Broken TeX а вы­со­та равна 3.

1) 12
2) 27
3) 3
4) 9
5) 24
6) 17
3.  
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де ABCDF все ребра равны 1. Най­ди­те зна­че­ние угла между реб­ром FD и плос­ко­стью ос­но­ва­ния.

1) 45°
2) Broken TeX
3) Broken TeX
4) Broken TeX
5) 60°
6) Broken TeX
4.  
i

Сто­ро­ны ос­но­ва­ния пря­мо­го па­рал­ле­ле­пи­пе­да равны 6 дм и 8 дм. Из­вест­но, что мень­шая диа­го­наль па­рал­ле­ле­пи­пе­да равна 9 дм, а одна из диа­го­на­лей ос­но­ва­ния равна 12 дм. Най­ди­те бо­ко­вое ребро и боль­шую диа­го­наль пря­мо­го па­рал­ле­ле­пи­пе­да.

1) Broken TeX дм
2) Broken TeX дм
3) 5 дм
4) 13 дм
5) 6 дм
6) 8 дм
5.  
i

Сто­ро­ны ос­но­ва­ний пра­виль­ной усе­чен­ной тре­уголь­ной пи­ра­ми­ды 4 дм и 12 дм. Бо­ко­вая грань об­ра­зу­ет с боль­шим ос­но­ва­ни­ем угол 60°. Най­ди­те вы­со­ту.

1) 5 дм
2) 4 дм
3) 3 дм
4) 7 дм
6.  
i

В пра­виль­ной тре­уголь­ной приз­ме все ребра равны 1. Точка K — се­ре­ди­на ребра AC. Най­ди­те ко­ор­ди­на­ты век­то­ров Broken TeX и Broken TeX

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
5) Broken TeX
6) Broken TeX
7.  
i

Hай­ди­те пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра, по­лу­чив­ше­го­ся вра­ще­ни­ем куба со сто­ро­ной рав­ной 2 см во­круг пря­мой АА1.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
5) Broken TeX
6) Broken TeX
8.  
i

Дан тре­уголь­ник АВС, у ко­то­ро­го АВ = 15 м, ВС = 18 м и АС = 12 м. Най­ди­те длину бис­сек­три­сы АD.

1) 11 м
2) 12 м
3) 6 м
4) 14 м
5) 8 м
6) 10 м
9.  
i

Через вер­ши­ну остро­го угла пря­мо­уголь­но­го тре­уголь­ни­ка ABC с пря­мым углом C про­ве­де­на пря­мая AD, пер­пен­ди­ку­ляр­ная плос­ко­сти тре­уголь­ни­ка. Най­ди­те рас­сто­я­ние от точки D до вер­ши­ны B, если AC = 8, BC = 9 и AD = 10.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) 132
5) Broken TeX
6) Broken TeX
10.  
i

В пра­виль­ной ше­сти­уголь­ной пи­ра­ми­де SABCDEF с вер­ши­ной S сто­ро­на ос­но­ва­ния равна Broken TeX а бо­ко­вое ребро равно Broken TeX Най­ди­те угол между реб­ра­ми AS и SD.

1) Broken TeX
2) Broken TeX
3) 60°
4) 45°
5) 90°
6) Broken TeX
11.  
i

Дано: SABCD пи­ра­ми­да, SO — вы­со­та, ABCD — тра­пе­ция, AB = 9, CD = 4, AD = BC, O — центр впи­сан­ной окруж­но­сти, Broken TeX Вы­чис­ли­те пло­щадь пол­ной по­верх­но­сти пи­ра­ми­ды.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
5) Broken TeX
6) 17
12.  
i

Шар ра­ди­у­сом 5 см пе­ре­се­чен плос­ко­стью, от­сто­я­щей от его цен­тра на 3 см. Най­ди­те ра­ди­ус и диа­метр круга, по­лу­чив­ше­го­ся в се­че­нии.

1) Broken TeX
2) Broken TeX
3) 8 см
4) 16 см
5) 4 см
6) Broken TeX
13.  
i

Точка A — центр шара. По дан­ным ри­сун­ка най­ди­те пло­щадь сфе­ри­че­ской части мень­ше­го ша­ро­во­го сег­мен­та.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
5) Broken TeX
6) Broken TeX
14.  
i

Из ко­ну­са вы­ре­за­ли шар наи­боль­ше­го объёма. Най­ди­те от­но­ше­ние объёма сре­зан­ной части ко­ну­са к объёму шара, если осе­вое се­че­ние ко­ну­са — рав­но­сто­рон­ний тре­уголь­ник.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
15.  
i

Ос­но­ва­ни­ем пря­мой приз­мы слу­жит рав­но­бед­рен­ная тра­пе­ция ABCD со сто­ро­на­ми Broken TeX см, Broken TeX см, Broken TeX см. Пло­щадь ее диа­го­наль­но­го се­че­ния равна 180 см2. Най­ди­те пло­щадь пол­ной по­верх­но­сти приз­мы.

1) 522 см2
2) 256 см2
3) 906 см2
4) 1528 см2
5) 1728 см2
6) 129 см2
16.  
i

Пря­мая OO1 — ось ци­лин­дра. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра, если пло­щадь CC1E1E равна Q.

1) 2πQ
2) πQ
3) Broken TeX
4) 1
5) 4πQ
6) 3πQ
17.  
i

Пря­мо­уголь­ный тре­уголь­ник с ги­по­те­ну­зой 6 и ост­рым углом 15° вра­ща­ет­ся во­круг пря­мой, со­дер­жа­щей ги­по­те­ну­зу, когда чис­ло­вое зна­че­ние объ­е­ма тела вра­ще­ния на­хо­дит­ся на про­ме­жут­ке:

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
5) Broken TeX
6) Broken TeX
18.  
i

Через два про­ти­во­по­лож­ных ребра куба про­ве­де­но се­че­ние, пло­щадь ко­то­ро­го равна Broken TeX см2. Най­ди­те ребро куба и его диа­го­наль.

1) Broken TeX см
2) 16 см
3) 14 см
4) Broken TeX см
5) 7 см
6) Broken TeX см
19.  
i

В конус с вы­со­той 15 см и ра­ди­у­сом 10 см впи­сан ци­линдр с вы­со­той 12 см. Най­ди­те объём ци­лин­дра.

1) 48 см3
2) 48π см3
3) Broken TeX
4) 98π см3
5) Broken TeX
6) Broken TeX
20.  
i

Из точки M к плос­ко­сти α про­ве­де­ны две на­клон­ные, длина ко­то­рых 18 см и Broken TeX см. Их про­ек­ции на эту плос­кость от­но­сят­ся как 3 : 4. Най­ди­те рас­сто­я­ние от точки M до плос­ко­сти α и длины их про­ек­ций.

1) 12 см
2) 16 см
3) Broken TeX см
4) Broken TeX см
5) Broken TeX см
6) Broken TeX см
21.  
i

В ос­но­ва­нии пря­мой приз­мы лежит рав­но­бед­рен­ная тра­пе­ция, тупой угол ко­то­рой равен 120°. Диа­го­наль тра­пе­ции яв­ля­ет­ся бис­сек­три­сой остро­го угла. Диа­го­наль приз­мы об­ра­зу­ет с ос­но­ва­ни­ем угол 45°. Мень­шее ос­но­ва­ние равно 4. Число V — объем приз­мы. Ука­жи­те не­чет­ные де­ли­те­ли числа V.

1) 1
2) 3
3) 11
4) 2
5) 9
6) 3
22.  
i

Дана SABCD пи­ра­ми­да, SO — вы­со­та, АВСD — пря­мо­уголь­ник. Вы­чис­ли­те пло­щадь пол­ной по­верх­но­сти пи­ра­ми­ды, если AD = 6, DC = 8 и SO = 4.

1) Broken TeX
2) Broken TeX
3) 15
4) Broken TeX
5) Broken TeX
6) 17
23.  
i

Точка O — центр шара, точка O1 — центр круга — се­че­ния шара. Най­ди­те объем шара, если O1N = 6 и угол O1NO равен 30°.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
5) Broken TeX
6) Broken TeX
24.  
i

Объем ко­ну­са равен 27. На вы­со­те ко­ну­са лежит точка и делит её в от­но­ше­нии 2 : 1 счи­тая от вер­ши­ны. Через точку про­ве­де­но се­че­ние, ко­то­рое яв­ля­ет­ся ос­но­ва­ни­ем мень­ше­го ко­ну­са с той же вер­ши­ной. Най­ди­те объем мень­ше­го ко­ну­са.

1) 4
2) 6
3) 10
4) 8
5) 7
6) 9
25.  
i

SABCD — пра­виль­ная че­ты­рех­уголь­ная пи­ра­ми­да, сто­ро­на ос­но­ва­ния ко­то­рой 10, а бо­ко­вое ребро равно Broken TeX Най­ди­те пе­ри­метр се­че­ния плос­ко­стью, про­хо­дя­щей через точки B и D па­рал­лель­но ребру AS.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) 24
5) Broken TeX
6) Broken TeX
26.  
i

B ос­но­ва­нии пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да лежит пря­мо­уголь­ник со сто­ро­на­ми 3 и 4. Вы­со­та па­рал­ле­ле­пи­пе­да 5. Най­ди­те пло­щадь диа­го­наль­но­го се­че­ния пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да.

1) 20
2) Broken TeX
3) Broken TeX
4) Broken TeX
5) 25
6) Broken TeX
27.  
i

От­ре­зок DC пер­пен­ди­ку­ля­рен плос­ко­сти пря­мо­уголь­но­го тре­уголь­ни­ка ABC, ∠B  =  90°. Тре­уголь­ник ACD рав­но­бед­рен­ный. Из пе­ре­чис­лен­ных ниже от­ве­тов най­ди­те те, ко­то­рые равны зна­че­нию синус угла между плос­ко­стью ADB и ABC, если Broken TeX AB  =  3.

1) Broken TeX
2) Broken TeX
3) Broken TeX
4) Broken TeX
5) Broken TeX
6) Broken TeX
28.  
i

Дан еди­нич­ный куб ABCDA1B1C1D1 . Най­ди­те угол между пря­мой AB1 и пря­мой BC1.

1) Broken TeX
2) 60°
3) Broken TeX
4) Broken TeX
5) 90°
6) 30°
29.  
i

В ци­лин­дре, пло­щадь ос­но­ва­ния ко­то­ро­го равна 48 (при­нять Broken TeX), про­ве­де­но осе­вое се­че­ние. AC  — диа­го­наль осе­во­го се­че­ния ци­лин­дра. Из ниже пе­ре­чис­лен­ных от­ве­тов най­ди­те те, ко­то­рые яв­ля­ют­ся де­ли­те­ля­ми зна­че­ния пло­ща­ди бо­ко­вой по­верх­но­сти ци­лин­дра.

1) 6
2) 8
3) 9
4) 34
5) 65
6) 96
30.  
i

В ци­лин­дре, пло­щадь ос­но­ва­ния ко­то­ро­го равна 75 (при­нять Broken TeX), про­ве­де­но осе­вое се­че­ние. AC  — диа­го­наль осе­во­го се­че­ния ци­лин­дра. Из ниже пе­ре­чис­лен­ных от­ве­тов най­ди­те те, ко­то­рые яв­ля­ют­ся де­ли­те­ля­ми зна­че­ния пло­ща­ди бо­ко­вой по­верх­но­сти ци­лин­дра.

1) 5
2) 7
3) 9
4) 11
5) 15
6) 78
31.  
i

В сфере, пло­щадь по­верх­но­сти ко­то­рой равна 3468 см2 (π ≈ 3), на рас­сто­я­нии OO1 от ее цен­тра про­ве­де­но се­че­ние. Вы­бе­ри­те из пред­став­лен­ных чисел те, ко­то­рые яв­ля­ют­ся де­ли­те­ля­ми зна­че­ния пло­ща­ди про­ве­ден­но­го се­че­ния.

1) 17
2) 5
3) 35
4) 25
5) 27
6) 55
32.  
i

В сфере, пло­щадь по­верх­но­сти ко­то­рой равна 7500 см2 (π ≈ 3), на рас­сто­я­нии OO1 от ее цен­тра про­ве­де­но се­че­ние. Вы­бе­ри­те из пред­став­лен­ных чисел те, ко­то­рые яв­ля­ют­ся де­ли­те­ля­ми зна­че­ния пло­ща­ди про­ве­ден­но­го се­че­ния.

1) 9
2) 15
3) 10
4) 5
5) 3
6) 2