Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Функции, их свойства, графики функций
1.  
i

Из ниже пе­ре­чис­лен­ных от­ве­тов, ука­жи­те вер­ное для функ­ций f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2x плюс 1 и g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = \srqrt x.

1) g левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка яв­ля­ет­ся ли­ней­ной функ­ци­ей функ­ци­ей
2) f левая круг­лая скоб­ка g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка =2 ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус 1
3) g левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 2 x конец ар­гу­мен­та плюс 1
4) f левая круг­лая скоб­ка g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка яв­ля­ет­ся убы­ва­ю­щей функ­ци­ей
5) f левая круг­лая скоб­ка g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка яв­ля­ет­ся ли­ней­ной функ­ци­ей
6) g левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка яв­ля­ет­ся воз­рас­та­ю­щей функ­ци­ей
2.  
i

Hай­ди­те наи­мень­шее зна­че­ние функ­ции: y = x в квад­ра­те минус 4x плюс 3.

1) 4
2) 7
3) 3
4) 1
5) −1
6) 7
3.  
i

Ука­жи­те про­ме­жут­ки, в ко­то­рых лежат экс­тре­му­мы функ­ции: y = \lg левая круг­лая скоб­ка 1 минус x в квад­ра­те пра­вая круг­лая скоб­ка .

1)  левая квад­рат­ная скоб­ка минус 1; 1 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус 3; 0 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка 1; 6 пра­вая квад­рат­ная скоб­ка
6)  левая круг­лая скоб­ка минус 8; 8 пра­вая круг­лая скоб­ка
4.  
i

Вы­бе­ри­те все пря­мые, ко­то­рые пер­пен­ди­ку­ляр­ны урав­не­нию ка­са­тель­ной, про­ве­ден­ной к гра­фи­ку функ­ции y = 2x в кубе минус 3x в квад­ра­те плюс 6x минус 7 в точке x0 = 1.

1) y= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x плюс 5
2) y= дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x минус 2
3) y=6 x минус ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
4) y= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x минус 2
5) y= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
6) y= дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
5.  
i

Най­ди­те об­ласть опре­де­ле­ния функ­ции y= арк­си­нус левая круг­лая скоб­ка 2 x плюс 1 пра­вая круг­лая скоб­ка .

1) (-1; 1)
2) (0; 2)
3) [-1; 0]
4) [-2; 0]
5) (-1; 0)
6) [0; 2]
6.  
i

Ука­жи­те функ­цию, воз­рас­та­ю­щую на всей об­ла­сти опре­де­ле­ния.

1) y= левая круг­лая скоб­ка дробь: чис­ли­тель: 11, зна­ме­на­тель: 13 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка
2) y=0,2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка
3) y=4,3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка
4) y=5 в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка
5) y= левая круг­лая скоб­ка дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка
6) y=3,4 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка
7.  
i

Опре­де­ли­те ко­ор­ди­на­ты точек, сим­мет­рич­ных точке пе­ре­се­че­ния пря­мых y=2x плюс 3 и y= минус 3x плюс 1, от­но­си­тель­но осей ко­ор­ди­нат и на­ча­ла от­че­та.

1)  левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби ; дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби ; дробь: чис­ли­тель: 11, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби ; минус дробь: чис­ли­тель: 11, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби ; минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби ; минус дробь: чис­ли­тель: 11, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби ; дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка
8.  
i

Гра­фик функ­ции y=2 левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка в квад­ра­те плюс 8 по­лу­чен из гра­фи­ка функ­ции y=x в квад­ра­те с по­мо­щью пре­об­ра­зо­ва­ний. Из пред­ло­жен­ных ва­ри­ан­тов вы­бе­ре­те вер­ные утвер­жде­ния, со­от­вет­ству­ю­щие пре­об­ра­зо­ва­нию гра­фи­ка функ­ции y=x в квад­ра­те .

1) сдвиг на 8 ед. вверх вдоль оси ор­ди­нат
2) сдвиг на 8 ед. вниз вдоль оси ор­ди­нат
3) сдвиг на 7 ед. влево вдоль оси абс­цисс
4) рас­тя­же­ние в 2 раза вдоль оси ор­ди­нат
5) сдвиг на 8 ед. влево вдоль оси абс­цисс
6) сжа­тие в 2 раза вдоль оси абс­цисс
9.  
i

Ука­жи­те функ­цию, убы­ва­ю­щую на всей об­ла­сти опре­де­ле­ния

1) y=0.2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка
2) y= левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 13 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка
3) y=4,3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка
4) y= левая круг­лая скоб­ка дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка
5) y=5 в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка
6) y= левая круг­лая скоб­ка дробь: чис­ли­тель: 11, зна­ме­на­тель: 13 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка
10.  
i

Вы­бе­ри про­ме­жут­ки, в ко­то­рые вхо­дит об­ласть опре­де­ле­ния функ­ции y= дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 36 x плюс 9 конец ар­гу­мен­та , зна­ме­на­тель: x минус 1 конец дроби .

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 6000 пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка минус 150 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус 0,5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4) [−400; 0]
5)  левая квад­рат­ная скоб­ка минус 1 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
6) (0; 1000]
11.  
i

Ука­жи­те все целые числа из об­ла­сти опре­де­ле­ния функ­ции:

y= арк­тан­генс левая круг­лая скоб­ка 3x плюс 1 пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: минус x в квад­ра­те плюс 10x минус 21 конец ар­гу­мен­та конец дроби .

1) 3
2) 2
3) 5
4) 6
5) 4
6) 7
12.  
i

Две точки с абс­цис­са­ми x_1=1 и x_2=3 при­над­ле­жит па­ра­бо­ле за­дан­ной фор­му­лой y=x в квад­ра­те минус 4. Через точки про­ве­де­на пря­мая. В какой точке па­ра­бо­лы ка­са­тель­ная будет па­рал­лель­на про­ве­ден­ной пря­мой.

1) (−3; 5)
2) (−2; 0)
3) (1; −3)
4) (2; 0)
5) (3; 5)
6) (4; 12)
13.  
i

Ука­жи­те гра­фи­ки функ­ции вида y= ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та .

A)

B)

C)

D)

E)

F)

1) A
2) B
3) C
4) D
5) E
6) F